

Earth Science Technology Forum 2015

Review of the UV Laser Demonstrator Program

Contract #NG13VS03C

M. Albert, K. Puffenburger, T. Schum, F. Fitzpatrick, S. Litvinovitch, D. Jones, J. Rudd, F. Hovis

Fibertek, Inc. Herndon, VA

Presentation Overview

- Program background and motivation
- System design overview
- Build status and performance test results
- Lifetest and environmental test plans

Design Motivation

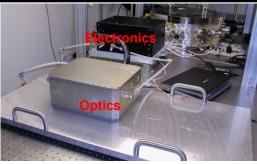
- A 40 W, 50-200 Hz, 1 µm laser supports multiple lidar based Earth Science measurements
 - Next generation cloud and aerosol (IR, green, and UV)
 - Winds (green and UV)
 - Ocean color (green)
 - Ozone
- Current airborne demonstrators meet most requirements for a space-base mission
 - Needs conversion to fully conductively cooled
 - UV lifetime needs to be demonstrated

Design Heritage

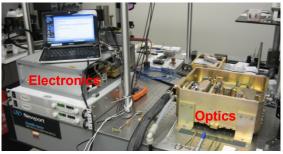
- 3rd generation, 1064 nm pump laser technology is well developed
 - 200 Hz, injection-seeded, single-frequency
 - 20 W/channel, configurable 1 or 2 channels
- Successfully demonstrated in multiple airborne lidar systems
 - Tropospheric Wind Lidar Technology Experiment
 - High Spectral Resolution Lidar 2
 - Global Ozone Lidar Demonstrator
 - Optical Auto-Covariance Wind Lidar
 - Airborne Cloud Aerosol Transport System

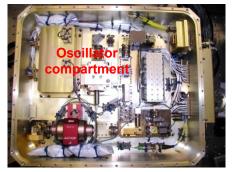
TWiLiTE Integration onto Global Hawk

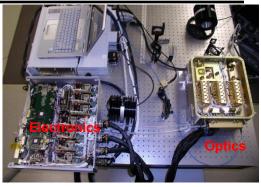
Optical Autocovariance Wind Lidar in a WB-57 Pallet



HSRL-1 on the NASA Langley King Air


Laser Performance Goals


- 40 W, 50-200 Hz, 1 μm pump source
- Injection seeded, singlefrequency
 - Required for most next generation lidar systems
 - Improves reliability
- High efficiency 532 nm generation
 - Validation through performance and lifetime testing
- Improved 355 nm lifetime
 - Focus is on contamination control
- Full conductive cooling
 - Required for space-based systems
- Validated TRL-6 design
 - Derived from previous airborne systems

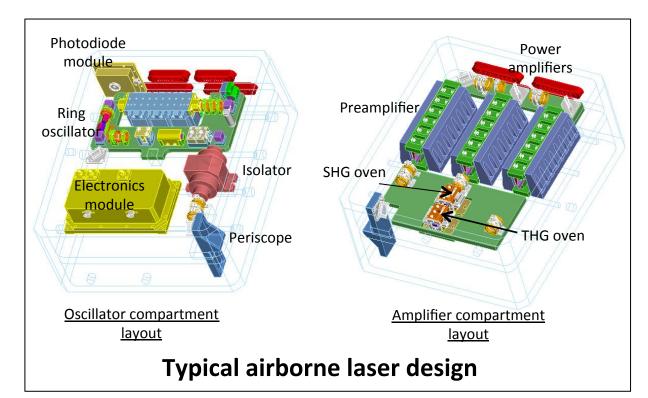

Tropospheric Wind Lidar Technology Experiment

Global Ozone Lidar Demonstrator

Airborne Cloud/Aerosol Transport System

High Spectral Resolution Lidar-2

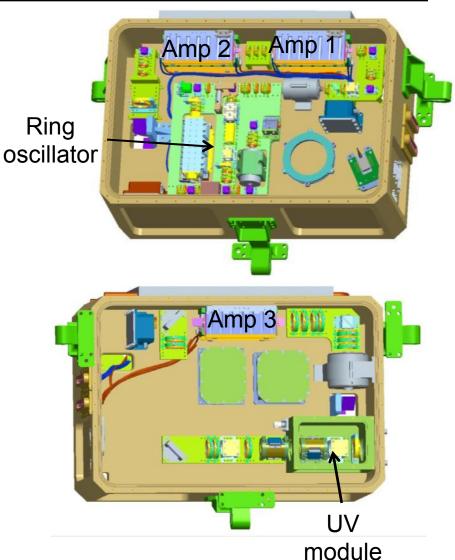
Optical Autocovariance Wind Lidar


Updated Program Objectives & Approach

- Develop a 100 mJ, 150 Hz UV laser transmitter with a lifetime of > 5x10⁹ shots
 - Develop an improved 1064 nm final power amplifier that can achieve 250 mJ/pulse at 150 Hz with an M² ≤ 2
 - Develop a purely conductively cooled Laser Optics Module (LOM) design
 - Develop a UV module design that converts the 250 mJ pump to 100 mJ at 355 nm
- Conduct high repetition rate (20 kHz) UV testing of candidate LBO triplers
- Conduct 4 month life testing of the laser transmitter to assess 532 nm lifetime
- Conduct 4 month half power 355 nm life testing of the laser transmitter for initial UV lifetime assessment
- Conduct 4 month full power 355 nm life testing of the laser transmitter for final UV lifetime assessment
- Conduct environmental testing to advance the design from TRL 4 to TRL 6
 - Thermal-vacuum & vibration

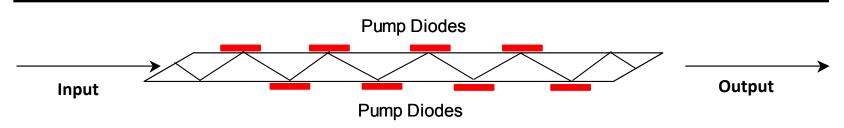
Heritage Airborne Design

- Injection seeded ring oscillator
- Dual compartment
- Dual 20 W output channels
- Sealed and air pressurized
- Diode-pumped zig-zag slabs
- Liquid cooled center plane

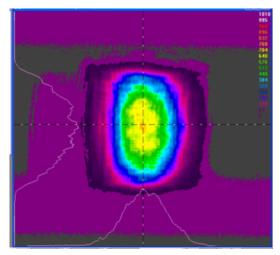


ESTF 2015

8

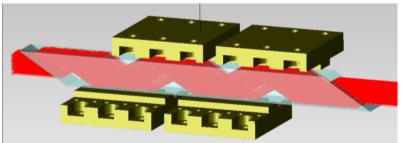

Heritage System Design Updates

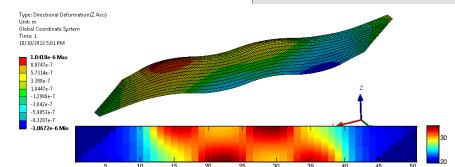
- All UV components in a hermetic, polymer free environment
 - Improved lifetime
- Internal telescope in UV box
 - Reduces fluence on down stream optics
- Pure conductive cooling to a single external thermal interface
 - Simplifies thermal design
 - Required for a space-based system
 - Amplifiers mounted on laser module wall
- Improved final power amp design
 - Reduced beam distortion



Previous high energy amplifier achieved FIBERTEK, INC energy, but spoiled beam quality

Pump-on-bounce amplifier

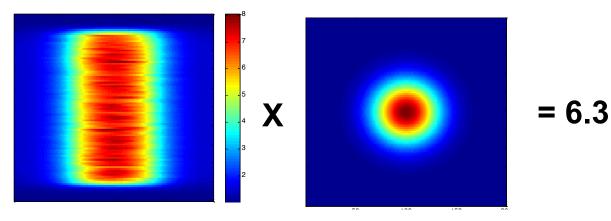

- 2-sided pumped and cooled
- Footprint length is limited to diode bar length of 1 cm
- Previous pump on bounce design achieved >900 mJ pulse energies but with M² > 2.5
- Input beams >3 mm input beam overfilled pump spot
- Overfilled pumping leads to non-spherical, difficult to correct aberrations



910 mJ/pulse, 4.5 mm x 6.7 mm $M_x^2 = 2.5$, $M_y^2 = 2.5$

Final Amp Design: Higher power diodes pumping a larger footprint

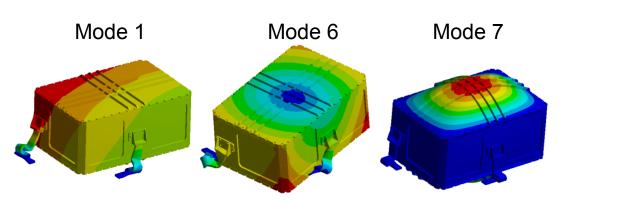
Twice the local heating, twice the deformation, but half as many bounces

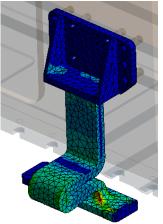

dn/dT and deformation induced wavefronts are ~ same as the long slab

- 200W bars derated to 150-175W, Still allows ~120-150ms pumping and good efficiency
- Diode array lengths of 2 cm match well to a 5-6 mm input beam

Power Amp Is Built and Characterized

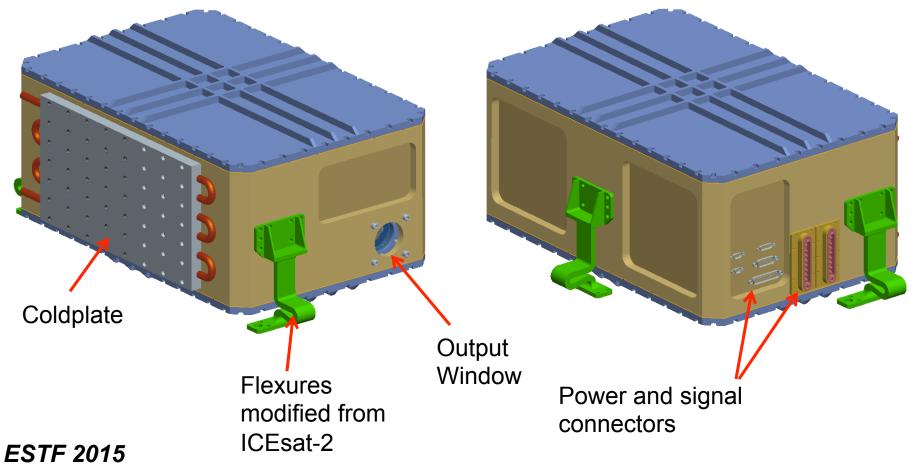
• Performed a weighted average over the probe beam shape to get the expected measured small signal gain.


d d


Final Power Amp

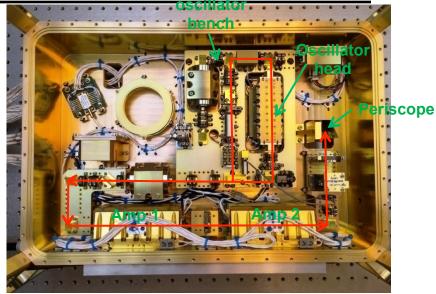
- Actual measured small sigma gain is 6.5
- Difference can be explained by uncertainties in parameters, in particular sigma at elevated temperature

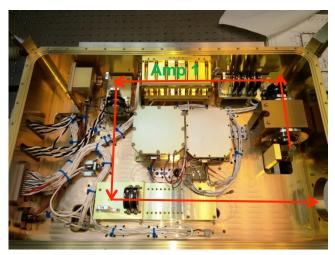
Vibration analysis indicates selected design will perform well



- Using modified ICESat-2 flexures for the box.
- Optimized flexures to minimize the frequency of rigid body modes
 - Flexures designed to resonate from 75 to 150 Hz band width
 - 3 translation and 3 rotation modes (6 total)
 - Flexures will survive GEVS 14.1 GRMS with notching.
- Optimized mounting of the resonator bench to the mid-plane to maximize the frequency of the internal mid-plane drum mode
 - Since this is the largest bench in the laser, it was light weighted and stiffened with ribs. Bench is aluminum.
 - Selected 5 mounting feet which achieves a frequency of >1000Hz

Exterior LOM Views


Overall Dim: 18.0" x 12.0" x 8.5" Weight: 88 lbs


Hardware Assembly Status LOM – Main Housing

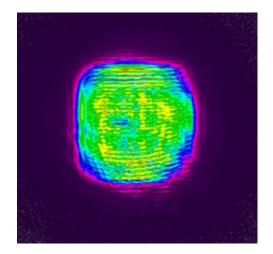
FIBERTEK, INC.

- Assembly & processing complete
- Major component fit checks completed
- He leak check in vacuum environment completed
- Harnessing of the housing is complete
- All four laser pump heads have been installed and thermally balanced
- Alignment of the ring oscillator and first two amplifiers is complete
- Final amplifier installation and characterization is nearly complete

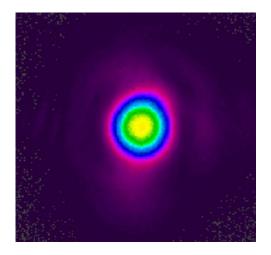
Oscillator/Amp 1/ Amp 2 Compartment

Amp 3/ SHG/THG Compartment

Resonator Performance Summary


Parameter	Units	Goal	Demo'd	Status
Wavelength	nm (air)	1064 (nom)	1064.393	
Pulse Rate	Hz	150	150	
Pulse Energy	mJ	≥ 25	34	
Pulse Width	ns	10 – 20	14	M
Beam Quality	M^2	≤ 1.5	1.3	M
Spectral Width	MHz	≤ 100	≤ 70	M

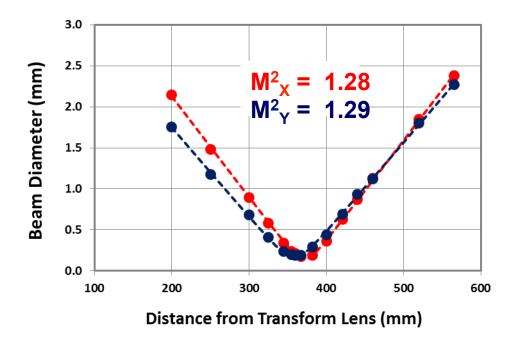
Hardware Assembly Status


Resonator Spatial Distribution

Intra-Cavity Field Distribution

Imaged Location 2.5 mm intra-cavity aperture

Far Field Distribution



Uncorrected Divergence 890 μr

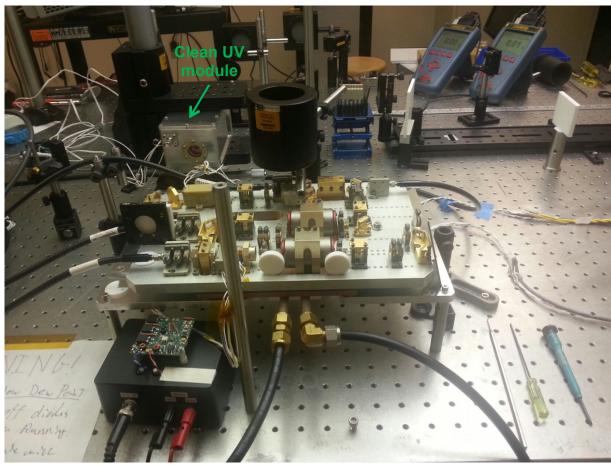
Hardware Assembly Status

Resonator Beam Quality

Amp 1 & 2 Performance Summary

Units	Goal	Demo'd	Status
Hz	150	150	V
тJ	≥ 150	>200	
ns	10 – 20	14	
M^2	≤ 1.8	1.5	
	Hz mJ ns	<i>Hz</i> 150 <i>mJ</i> ≥ 150 <i>ns</i> $10 - 20$	Hz 150150 mJ \geq 150 >200 ns 10 - 2014

Remaining Assembly Tasks


- Installation of Amp 3 is in work
 - Installation and final characterization is expected in late June
- SHG assembly is ready for installation
 - Installation and final characterization is expected in mid July
- 532 nm lifetime testing will begin after the SHG installation

Lifetime Testing

20 kHz UV Module Life Test

- Uses ICESat-2 20 kHz brassboard MOPA as the pump source
- A deliverable identical UV module is built up with a 6x6x25 mm THG coated in the same run as the larger deliverable crystals
- Set-up is completed and testing is has just started

- Assembly of the UV demonstrator is complete through the first two amplifiers
 - Oscillator and Amp 1 & 2 performance meets the design goals with margin
- Characterization of the performance with Amp 3 is underway
- The 20 kHz UV lifetest has started
- SHG installation and beginning of 532 nm lifetime testing is expected by mid July