Introduction

“A“highly accurate multiangle-
multiwavelength polarimeter” is a key
component of NASA's future Aerosol-
Cloud-Ecosystem (ACE) mission

—NRC Decadal Survey (2007)

JPL’'s Multiangle SpectroPolarimetric
Imager (MSPI) development effort is
maturing key technologies for ACE

Other potential missions include Pre-
ACE (PACE) and Earth Venture

o Key design drivers include:

Aerosol/Cloud/Ecosystems Mission (ACE)
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Degree of linear polarization uncertainty <0.005

Sub-km spatial resolution

Spectral coverage from the UV to SWIR



Modulation enables high-accuracy
polarimetric imaging
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— Tinbergen (2005)
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Current dual-PEM approach

Modulation patterns from dual PEMs (AirMSPI data)
X = relative phase within a low frequency (beat) cycle
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Typical PEM modulation frequency is 42 kHz
(24 ms per cycle)

To enable a slower readout, we currently put 2 PEMs in
series with slightly different frequencies to generate a 25 Hz
beat signal

W
Vo - Data 470 nm Q

\/ - Model 470 nm Q
- Data 470 nm U

Model 470 nm U

- Data 660 nm Q
* Model 660 nm Q
* Data 660 nm U

: Model 660 nm U

- Data 865 nm Q
- Model 865 nm Q
- Data 865 nm U

: Model 865 nm U

0.5 04 03 02 01 00 01 02 03 04 05 -05 04 03 02 01 00 01 0.2 03 04 05-05 -04 03 -02 -01 00 01 02 03 04 05

X

X

X



Pushbroom imaging provides /, Q, and U
using 2 line arrays for a given spectral band
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Existing Multiangle SpectroPolarimetric
Imagers (MSPI)

GroundMSPI AirMSPI

Portable field Flies in nose of NASA ER-2 with Extends spectral coverage into
instrument on 2- 1-axis gimbal for multiangle the SWIR and adds O, A-band
axis gimbal viewing +67° Currently operating in the lab

Used for Has flown in multiple field To be installed on the ER-2 in a
developing surface  campaigns observing aerosols
reflectance models and clouds

few months

365, 385, 445%, 545, 645*, 751, 763,

355, 380, 445, 470%, 555, 660%, 865*, 935 nm 865* 945, 1620*, 1888, 2185* nm



Example AirMSPI aerosol
observations over land
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Example AirMSPI cloud observations
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“‘Sweep” mode provides continuous
angular coverage.

Supernumerary and glory interference

fringes are highly apparent in polarized
light and enable sensitive retrievals of

cloud droplet size distributions.



High polarimetric accuracy and sensitivity

RMS error in DOLP
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Degree Of Linear Polarization (DOLP)

Polarimetric calibration eliminates systematic errors.

For MSPI, the limiting error source is random measurement noise, and
is controlled by achieving high signal-to-noise ratio (SNR)



Extension of spectral coverage and range
using AirMSPI-2
9|

367 |

543 |

Narrow O, A-band channels Extension to the SWIR
445

540 645 ‘ 555555 1615 1875 2185
751762.5

o Laboratory data from AirMSPI-2 demonstrates
successful extension of the MSPI| modulator
and focal plane technology into the SWIR.

2185Q -
o Test flights on the ER-2 are planned for
August.



MSPI technologies have been space-
qualified to TRL 6

m Polarization modulator
Photoelastic modulators

Athermal, achromatic quarter
waveplates (quartz:MgF,:sapphire)

®m Focal plane
High speed/low noise readout

ﬁi&ifﬁ integrated circuit (ROIC)
o . Embedded Si CMOS photodiodes for
WIR ROIC+HgCdTe WQSWIR UV/VNIR, hybridized HgCdTe for
.- pattened g SWIR
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Mosaicked spectropolarimetric filters




Limitation of dual-PEM approach
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Usable wavelength range is restricted to about 400 — 2100 nm

At high retardances (short wavelengths), the modulation patterns are
highly peaked, which sacrifices efficiency and enhances noise
sensitivity

At low retardances (long wavelengths), the modulation patterns have
reduced amplitude, which also enhances noise sensitivity



Demodulation of the signal from a single
PEM enables improved performance

Requirements

Sampling and demodulation of the 42 kHz waveforms from a single
PEM

Low demodulation noise
Sensing from UV to SWIR and potentially MWIR

High speed readout without penalty of capacitor thermal (kTC) noise
associated with repeated signal sampling

How can this be done?
Temporal binning of charges collected during each 24 ms PEM cycle

Use of avalanche photodiode (APD) gain overwhelms kTC noise
associated with the charge binning



The concept makes use of avalanche
photodiodes (APDs)

- Photoelectrons liberate secondary electrons, which in turn
knock more electrons out of the semiconductor lattice

o The total number of electrons generated is the avalanche gain
G, which ranges from ~10-1000

kTC noise has a much less deleterious effect than conventional
photodetectors because the ratio of switching noise to shot noise
decreases by G2

o A 2x8 HgCdTe APD array with16 high-speed digital and analog
outputs is being procured from DRS Technologies for proof of
concept (350 nm — 3.5 mm)
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Pushbroom imaging provides /, Q, and U
using 1 line array for a given spectral band
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Basis function value
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Binning concept

Since we need to solve for just 3 unknowns (/, A, and B; or
equivalently, /, Q, and U) the required information content is
achievable by distributing the continuously arriving signal into 3

discrete bins

Optimizing the time sampling of the 3 bins provides lowest
sensitivity to random noise
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Comparison of dual PEM and single PEM
noise sensitivities
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o Single PEM approach makes more efficient use of available light
and is less sensitive to random noise over a much wider range
of PEM retardance (i.e., wavelengths)



Planned proof of concept

Existing polarization state generator
(PSG) from IIP-07, l1IP-10
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Only a single PEM is required
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to retrieve I, Q, and U

After initial tests, a second PEM
with fast axis at 45° to the first
will be added to measure
circular polarization V
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Conclusions

The MSPI dual PEM polarimetric imaging approach has been
successfully demonstrated in airborne flight

The next generation concept eliminates one PEM and uses
avalanche photodiodes to further advance the measurement
capability

Less sensitivity to random noise

Good noise performance over a wider range of wavelengths
(UV-MWIR feasible)

|, Q, and U are all recovered from a single pixel

Inclusion of a second PEM with fast axis at 45° to first enables
measurement of circular polarization, V

A proof-of-concept system using a 2x8 APD array is being built



