# THz InP HEMT Technology for Sub-Millimeter Wave Atmospheric Sensing

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

6-23-2015

**Bill Deal** 

#### **Motivation**



- Over the last 10 years, DARPA investment has pushed MMIC technology to ~1,000 GHz
- This new capability will directly benefit NASA Earth Science Missions



**Motivation** 



Scaling enables significantly enhanced performance

- -25 nm gatelength
- $-f_{max}$ : 1.5 THz
- $-f_{T}$ : 0.61 THz



### **Motivation**



- Amplifier Gain Demonstrated to 1 THz (1,000 GHz)
- Enables new generation of instruments for <u>new science missions</u>













- Motivation
- Outline
- Advantages of transistor based receivers at Sub-Millimeter Wave frequencies
- TMIC and "THz" InP HEMT Overview
- Technology Status
- Conclusion



- Last decade has seen significant innovations in semiconductor technology
- SMMW Receivers can be implemented in GaAs Schottky, InP HBT and InP HEMT Technologies at temperatures close to room temperature

|                           | GaAs Schottky | "THz" InP HBT | "THz" InP HEMT            |
|---------------------------|---------------|---------------|---------------------------|
| Sensitivity               | Good          | Poor          | Good<br>Better if cooled! |
| DC Power                  | Poor          | Good          | Good                      |
| Size/Integration          | Poor          | Good          | Good                      |
| Production<br>Scalability | Moderate      | Good          | Good                      |
| Maturity                  | High          | ~TRL4-TRL5    | ~TRL4-TRL5                |

## <u>THz Monolithic Integrated Circuit (TMIC)</u>





### InP HEMT Technology



- Transistor speed improvements come from:
  - Gate scaling
  - Channel design
  - Device design
- Significant benefits come from channel and device design
- Device continues to scale nicely
- Upward f<sub>MAX</sub> limit not yet reached.



### TMIC Frontside and Backside Scaling





#### Frontside:

- •TMICs realized in <u>G</u>rounded CoPlanar Waveguide
- Gaps/Widths to 1.5 um
- TFR20 and TFR100
- 100 pF/mm MIM capacitors
- "Compacted" transistor layouts reduce parasitics



#### Backside:

- 18 um substrate thickness for 850 GHz circuits
- Small diameter substrate via with reduced pad
- RIE etch for substrate removal in areas of electromagnetic transition and partial singulation



### LNA Overview



- NGAS has developed low noise amplifiers operating to 850 GHz
- 1.0 THz LNA in development
- Limited data with new baseline (25 nm)
- PA's have also been developed, not described in this presentation

| Center<br>Frequency | Technology                                        | Minimum <u>Demonstrated</u> Noise Figure                 |
|---------------------|---------------------------------------------------|----------------------------------------------------------|
| 183 GHz             | 35 nm IACC                                        | 4.2 dB                                                   |
| 235 GHz             | 35 nm IACC                                        | 7.25 for receiver with window                            |
| 180-280             | 30 nm IACC                                        | 5.5                                                      |
| 340 GHz             | 30 nm IACC                                        | 7.5 dB                                                   |
| 425 GHz             | 30 nm IACC                                        | 7.5 dB                                                   |
| 670 GHz             | <ul><li> 30 nm IACC</li><li> 25 nm IACC</li></ul> | <ul><li>11.7 dB</li><li>11 dB (in development)</li></ul> |
| 850 GHz             | 25 nm IACC                                        | • 11.5 dB                                                |
| 1030 GHz            | 20 nm IACC                                        | TBD                                                      |



#### 183 GHz LNA

- Packaged Noise Figure Evaluation of 183 GHz LNA
- 35 nm process
- Bias Conditions: 0.9 V, 27 mA
- No results for 25 nm process (yet)





- 15 dB peak gain at 835 GHz
- 13 dB gain at 850 GHz





- Measured noise figure 11-12 dB
- Measured using hot/cold measurement setup





#### First demonstrated amplifier gain at 1 THz (1,000 GHz)







- Northrop Grumman was first organization to build transistor based Sub-Millimeter Wave receivers
- Initial receiver work has been for technology demonstration purposes
- Recent deliveries are to DoD contractors for field demonstrations
- New work is geared toward atmospheric sensing (TWICE and CAMLS)

| Center<br>Frequency | Technology                                        | Comment                                                                                                                          | Status                                                          |
|---------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 183 GHz             | 35 nm IACC                                        | LNA front-end, diplexed dual mixers for<br>bandwidth coverage                                                                    | In test                                                         |
| 235 GHz             | 35 nm IACC                                        | ViSAR                                                                                                                            | 21 Receivers delivered                                          |
| 670 GHz             | <ul><li> 30 nm IACC</li><li> 25 nm IACC</li></ul> | <ul> <li>First Demonstrated in 2010, Comm-Link</li> <li>New development changes frequency plan<br/>and adds filtering</li> </ul> | <ul><li>Completed</li><li>Receiver update in progress</li></ul> |
| 850 GHz             | 25 nm IACC                                        | Comm-Link Demo                                                                                                                   | Demonstrated at DARPA<br>MTO Exhibit                            |
| 650 GHz             | 25 nm IACC                                        | Dual-Channel Direct Detect, "TWICE"                                                                                              | In Development                                                  |

#### **Receiver Overview**



#### 183 GHz Receiver

- IR&D
- Noise figure and Associated gain measured
- 1/f noise measurements pending ٠





#### 235 GHz Receiver

- ViSAR (DARPA STO)
- Airborne stand-off imaging demo
- Environmentally sealed ٠
- 21 delivered ٠





### **Receiver Overview**



#### 670 GHz Receiver (in development)

- First prototypes completed in 2010
- Current Effort (THz Ph III) improves
   performance





#### 850 GHz Receiver (Completed)

- THz Electronics Phase III
- Data-link demonstration at DARPA MTO Exhibit





### LO Chain Overview Overview



- Amplifier based LO chains show superior DC efficiency for sub-millimeter wave power generation compared to diode based chains
- *May* show improved reliability compared to diode based chains submillimeter wave LO chains due to lower millimeter wave mixer drive. *May be useful for radio-astronomy*

| Center<br>Frequency | Technology | Topology                  |
|---------------------|------------|---------------------------|
| 111 GHz             | 35 nm IACC | X6 single-chip multiplier |
| 340 GHz             | 25 nm IACC | X18 chipset (three chips) |
| 407 GHz             | 30 nm IACC | X9 with output buffers    |

### Multiplier Chain (x18)





### Noise and Power Trends

NORTHROP GRUMMAN

- Plots include measured NF and power from NGAS 35, 30, and 25 nm processes
- All data on packaged amplifiers at room temperature







- "THz" MMIC technology will be a key enabler for new types of atmospheric science in the Sub-Millimeter Wave band
- Significant technical challenges must be solved (process maturation)
- More details about applications can be seen in other talks:
  - Tuesday, 1:30, "Submillimeter-Wave Sounders with Cryogenic Amplifier Based Receiver Front-End", Goutam Chattopadhyay
  - Tuesday, 2:10, "Update on the Compact Adaptable Microwave Limb Sounder (CAMLS)", Nathaniel Livesey
  - Thursday, 9:30, "Tropospheric Water and Cloud ICE (TWICE) Instrument Development for CubeSat Deployment, Steve Reising

### THE VALUE OF PERFORMANCE.

