

The Ultra-Wideband Software-Defined Radiometer (UWBRAD) for Ice Sheet Internal Temperature Sensing: Instrument Status and Experiment Plans

Alexandra Bringer¹,

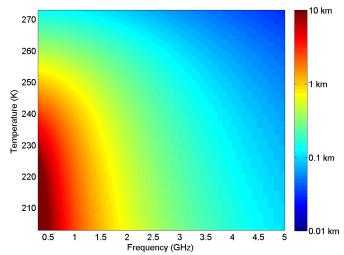
K. C. Jezek², J. T. Johnson¹, C. C. Chen¹, M. Durand², M. Aksoy¹,
D. Belgiovane¹, L. Tsang³, T. Wang³, S. Tan³, G. Macelloni⁴,
M. Brogioni⁴, M. Drinkwater⁵

¹ ElectroScience Laboratory, The Ohio State University
 ² Byrd Polar Research Center, The Ohio State University
 ³ University of Washington, Dept. of Electrical and Computer Engineering

 ⁴ CNR-IFAC Italy
 ⁵European Space Agency

ESTF 2015 June 24, 2015

Motivation


- Understanding dynamics of Earth's ice sheets important for future prediction of ice coverage and sea level rise
- Extensive past studies have developed a variety of sensing techniques for ice sheet properties, e.g. thickness, topography, velocity, mass, accumulation rate,...
- Internal temperature influences stiffness, which influences stress-strain relationship and therefore ice deformation and motion
- Limited capabilities for determining ice sheet internal temperatures at present
 - Available from small number of boreholes
- Can ice sheet internal temperatures be determined using microwave radiometry?

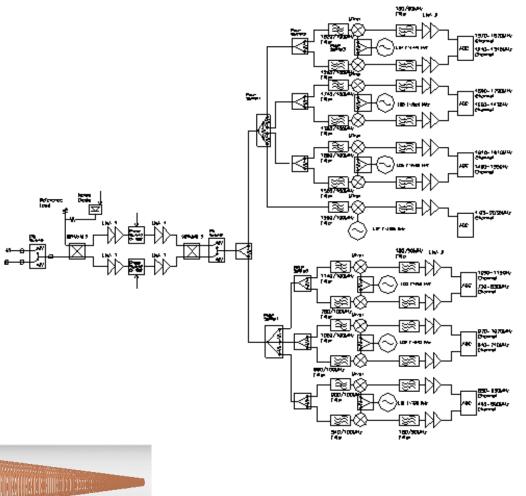
- Penetration depth in ice varies with frequency 0
 - larger for lower frequencies
 - up to 10 km at 500 MHz
- Using a multi-frequency radiometer can provide 0 information from different depths of the ice sheet
- We have proposed the 0 "ultra-wideband software defined radiometer" to perform multi-frequency ice sheet observations

Pure Ice Penetration Depth

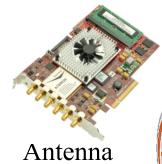
Ultra Wide Band RADiometer (UWBRAD)

- UWBRAD=a radiometer operating 0.5 2 GHz for internal ice sheet temperature sensing
- Requires operating in unprotected bands, so interference a major concern
- Address by sampling entire bandwidth (in 100 MHz channels) and implement real-time detection/mitigation/use of unoccupied spectrum
- Supported under NASA 2013 Instrument Incubator Program
- Goal: deploy at DOME-C, Antarctica tower in Nov 2015 and in Greenland flights in 2016
- Retrieve internal ice sheet temperatures and compare with in-situ core sites

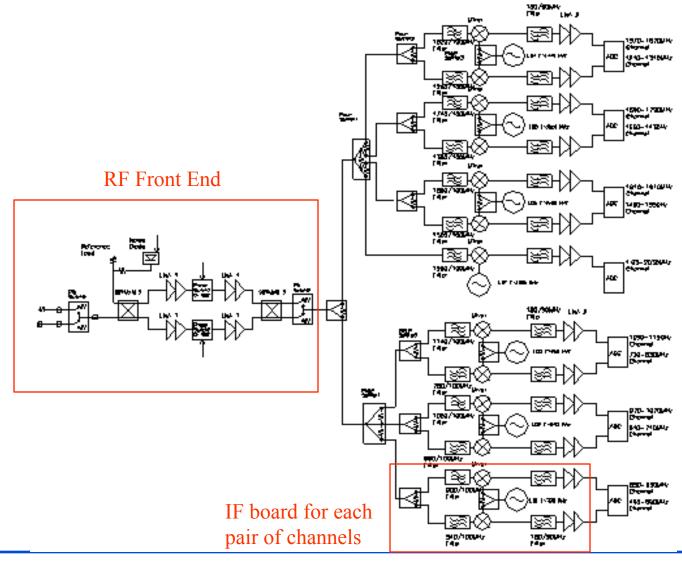
Freq (GHz)	0.5-2, 12 x 100 MHz channels
Polarization	Single (Right-hand circular)
Observation angle	Nadir
Spatial Resolution	1 km x 1 km (1 km platform altitude)
Integration time	100 msec
Ant Gain (dB)	11 dB
/Beamwidth	30°
Calibration (Internal)	Reference load and Noise diode sources
Calibration (External)	Sky and Ocean Measurements
Noise equiv dT	0.4 K in 100 msec (each 100 MHz channel)
Interference	Full sampling of 100 MHz bandwidth in 16 bits
Management	resolution each channel; real time "software defined"
	RFI detection and mitigation
Initial Data Rate	700 Megabytes per second (10% duty cycle)
Data Rate to Disk	<1 Megabyte per second



Radiometer Design

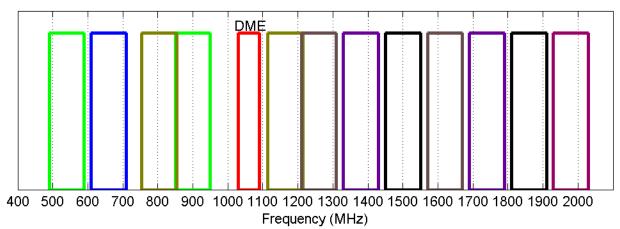

- The radiometer is composed of three major subsystems:
 - Front End

Digital Backend



Front End

• Single RF front end with separate dual-channel IF board for each pair of channels



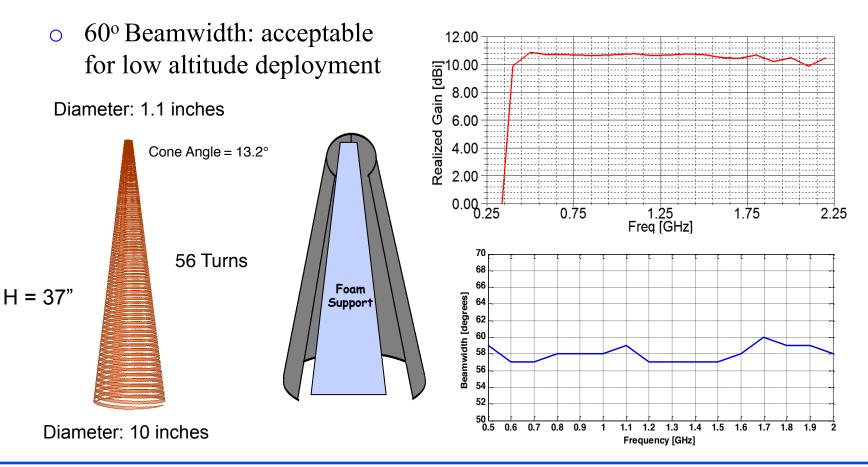
Frequency Plan and Progress

• Based on RFI considerations, the 0.5-2 GHz frequency bandwidth is divided into 12 separated 100 MHz channels; avoiding aircraft DME interference

• Radiometer front end construction and test complete; IF board build and test near completion

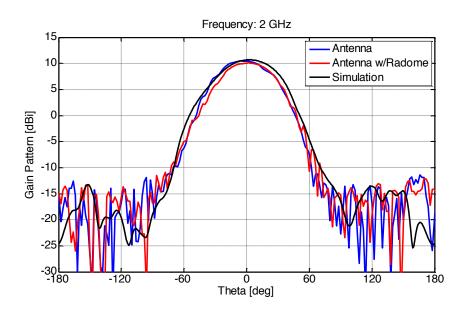
- Digital Subsystem based around the ATS9625 card from AlazarTech, Inc:
 - 2 channel, 250 MSPS,16 bit/sample data acquisition card
 - Achieves high throughput to host PC
 - RFI processing performed on host PC
- Each board can handle 2 100 MHz channels
- 6 boards used for 12 channels
 - \circ 3 PC's + One host PC

- PC's acquire data, perform 1K FFT, compute kurtosis in time and frequency domains, and perform multiple RFI detection and filtering steps:
 - Cross frequency
 - Pulse detection
 - Kurtosis detection
 - \circ ~10% duty cycle overall: acceptable for planned deployments



Antenna Design

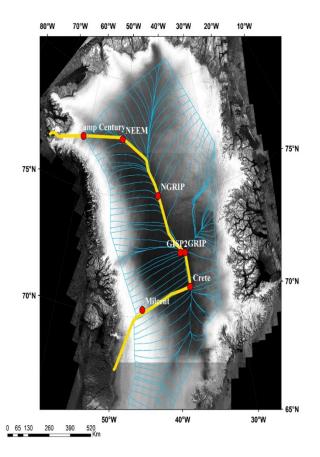
- Conical Logarithmic Spiral Antenna: Circular Polarization
- Stable and Moderate Gain (~ 10 dB) over frequencies



Antenna Measurement

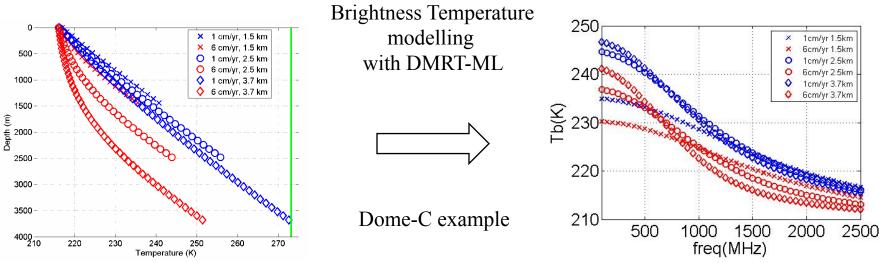
• Antenna built and tested; also with and without radome

- Performance shows close match to simulations
- Pattern nearly uniform versus frequency



Retrieval Studies

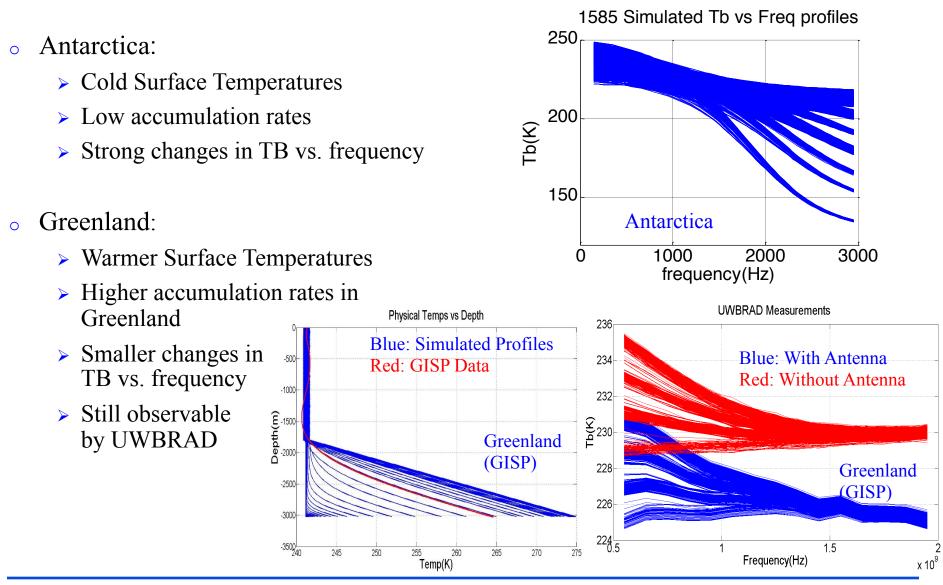
- UWBRAD will be deployed in 2016 in airborne observations of the Greenland ice sheets
- Follow paths of measured ancillary data where possible (e.g. Operation IceBridge ice thickness)
- Tie to the 4 deep ice cores in north and north central Greenland
- April or October deployment to avoid surface melt
- Locate near ice divides to simplify ice dynamics
- Concentrate on dry snow zone to minimize layering effects in melt facies
- Deploy on Ken Borek Airlines DC-3T Aircraft
 5 days/ 40 flight hours



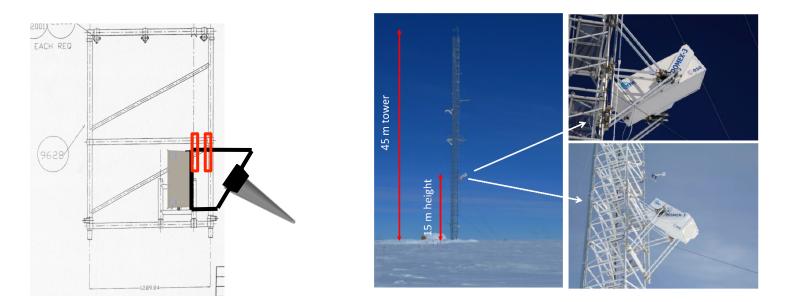
Retrieval Studies

Ice Sheet Internal Temperature depends on ice sheet height, Accumulation Rate, Geothermal Heat Flux Ice Sheet Internal Temperature variations induce Brightness Temperature variations

• DMRT-ML model (Picard et al, 2012) widely used to model emission from ice sheets (Brucker et al, 2011a) and snowpacks (Brucker et al, 2011b)


- > Uses QCA/Percus-Yevick pair distribution for sticky or non-sticky spheres
- » RT equation solved using discrete ordinate method
- > Need layer thickness, temperature, density, and grain size for multiple layers

Initial Retrieval Studies for Greenland



UWBRAD Deployment

 Also deploying a 4 channel UWBRAD in Antarctica at Dome-C between November 2015 and January 2016

DOMEX3 - Set Up

 Configuration: One incidence angle, 4 frequencies covering 0.5-2 GHz, 30-45 days campaign

Conclusions

- Multi-frequency brightness temperature measurements can provide additional information on internal ice sheet properties
 - Increased penetration depth in pure ice and reduced effect of scatterers as frequency decreases
- UWBRAD making good progress toward deployment
 - Delivery of 4 channel unit August 1st for November 2015 DOME-C campaign
 - Development of 12 channel unit on scheduled for Greenland flights Spring 2016

