Technology Development for a Hyperspectral Microwave Atmospheric Sounder (HyMAS)

W. Blackwell, C. Galbraith, L. Hilliard (NASA GSFC), P. Racette (NASA GSFC), and E. Thompson

ESTF

23 June 2015

This work is sponsored by the National Oceanic and Atmospheric Administration under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

- HyMAS: Motivation and Overview
 - Intermediate Frequency Processor (IFP)
 - Receiver Front-End Electronics
 - Airborne Instrument Accommodations
 - Current and Future Work

- Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance
- HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth
- A principal challenge is Size/Weight/ Power scaling
- Objectives of this work:
 - Demonstrate ultra-compact (100 cm³)
 52-channel IF processor (enabler)
 - Demonstrate a hyperspectral microwave receiver subsystem
 - Deliver a flight-ready system to validate HM sounding

Ready for future AITT

HyMAS System Components Roles and Responsibilities

IFP enables ultracompact, high-performance radiometry

MicroMAS-2	MiRaTA	TROPICS	EON	NAST-M		
3U cubesat scanning radiometer with channels near 90, 118, 183, and 206 GHz 12 channels for moist- ure and temperature profiling and precip- itation imaging	3U cubesat with 60, 183, and 206 GHz radiometers and GPS radio occultation 10 channels for temp- erature, moisture, and cloud ice measure- ments	Constellation of high- performance cubesats for high-revisit observ- ations of severe storms Provides most of PATH objectives for a small fraction of the cost	12U cubesat scanning radiometer with channels near 23, 31, 60, 90, 165, & 183 GHz Meets most ATMS Level 1B requirements Includes MicroMAS & MiRaTA innovations	Radiometer upgrade funded by NOAA to include IFP back end Substantial performance improvement at > 10X SWaP reduction		
Two launches in 2016	2016 launch expected		with larger aperture			

- HyMAS: Motivation and Overview
- Intermediate Frequency Processor (IFP)
 - Receiver Front-End Electronics
 - Airborne Instrument Accommodations
 - Current and Future Work

- IF processor functions
 - Amplify, channelize and detect 18-29 GHz IF bands (52 channels)
 - Post-detection filtering, A/D conversion, data processing
- Scalable in number of channels, processing capability
- LTCC microwave filters for high performance, small size
 - Assess state of technology for more aggressive (frequency, bandwidth) designs and more compact structures
- COTS parts for availability, low cost
 - Microwave MMICs
 - Analog/digital ICs and passives
- Ultra-compact form factor (10 x 10 x 1 cm³) and low DC power requirement (<100 mW/ch) drives the architecture and design
 - Leverage high performance miniature microwave filters, COTS MMICs, electronics packaging

Gain Budget – 118 GHz channels

	Antenna	Feed	W/G	Filter	LNA	Mixer	IF amp 1	Coax	Att 1	IF amp 2	Att 2	IF amp 3	Att 3	IF amp 4	Att 4	IF amp 5	Att 5	IF Filter
B (Hz)	3.00E+10	3.00E+10	3.00E+10	1.10E+10	1.25E+09													
Tb (K)	300																	
G (dB)		-0.2	-0.5	-1	15	-6	30	-2	0	15	0	15	-6	15	0	0	0	-16
P (W)	1.24E-10	1.19E-10	1.06E-10	3.08E-11	9.74E-10	2.45E-10	2.45E-07	1.54E-07	1.54E-07	4.88E-06	4.88E-06	1.54E-04	3.88E-05	1.23E-03	1.23E-03	1.23E-03	1.23E-03	3.50E-06
P (dBm)	-69.1	-69.3	-69.8	-75.1	-60.1	-66.1	-36.1	-38.1	-38.1	-23.1	-23.1	-8.1	-14.1	0.9	0.9	0.9	0.9	-24.6
Te (K)	3.00E+02	2.86E+02	2.55E+02	2.03E+02	6.41E+03	1.61E+03	1.61E+06	1.02E+06	1.02E+06	3.21E+07	3.21E+07	1.02E+09	2.55E+08	8.07E+09	8.07E+09	8.07E+09	8.07E+09	2.03E+08

- IFP Rev A successfully integrated and tested by NASA GSFC
 - Partial RF functionality: subset of 52 channels usable in radiometer testing and evaluation of signal levels
 - Full digital functionality for development and testing of control and data flow
 - ICDs and software documents updated
- IFP Rev B redesign complete
- IFP Rev B in fabrication
 - LTCC currently in fabrication, expected in June 2015
 - PCB (carrier board) in fabrication, also expected June 2015
 - Simulations on following slides

8/9-Channel LTCC IF Module Layout (top)

- Modules (10 mm x 43 mm or 48 mm) contains all amplification, multiplexer filtering, and detection circuits for 8 or 9 channels
- Single 18-30 GHz input, (8) detector (DC) outputs

- Resonances seen in filter test structures measurements
 - Test structures were cut/pasted from multiplexer layouts
- Resonances were recreated in simulations, confirming hypothesis
 - Original simulations did not include vertical microstrip-stripline launch

Coupler Simulated S-Parameters

Coupler Simulated Amplitude/Phase Balance

- Old design had borderline acceptable response over 18-30 GHz bandwidth due to minimum via size (5.5 mil) limit
 - Some tuning required to compensate for transitions between layers
 - Very sensitive to fabrication tolerances

- New minimum via size (4.5 mil) allows better stripline layer transitions, new design has much better response
 - Smooth response from 13 GHz to roughly 40 GHz
 - Less tolerance sensitive

Coupler Simulated S-Parameters

Coupler Simulated Amplitude/Phase Balance

- Multiplexer is composed of a cascade of coupler-filter-coupler unit cells
- Return loss is limited by the coupler response

Coupler and Filter Sonnet Model and Simulated Response

- New coupler design and new filter design implemented in single channel unit cell
 - Coupler performance gives better return loss over wide bandwidth
 - New filter and coupler allows denser arrangement of ground stitching vias to kill cavity resonances

RevB 9-Channel RF MUX Simulation

- Simulation includes cascade of 9 channel (coupler-filters-coupler "unit cells") in S-parameter simulation (ADS)
- Each unit cell is a Sonnet (2.5-D EM) simulation
 - No loss included to speed up simulation (~ 1 hour per channel)
- Response is excellent and insensitive to inter-channel line spacing due to improved coupler response

Stripline Cavity Modes – 4-channel Multiplexer

- 3-D HFSS model of stripline via structure with microstrip-tostripline transitions
- Confirms no in-band (18-30 GHz) resonances due to stripline via structure

- Rev A fabricated, tested, and delivered to NASA GSFC
 - Integration and testing in progress
 - Results of system testing will be ported to IFP Rev B design changes (e.g. channel gains, software, data formatting)
- Rev A problems identified and corrective actions designed and now in fabrication (Rev B)
 - Root causes determined through measurements, test structure analysis, and post-fabrication simulations
- Redesign of RF (LTCC) hardware, PCB, and enclosure complete; fabrication underway to correct problems

- HyMAS: Motivation and Overview
- Intermediate Frequency Processor (IFP)
- Receiver Front-End Electronics
 - Airborne Instrument Accommodations
 - Current and Future Work

HyMAS System Overview

- Four F-band Receivers (108 119 GHz)
 - 9 IF Channels each
 - 22.6 GHz DRO
- Two G-band Receivers (172 183GHz)
 - 8 IF Channels each
 - 38.5 GHz DRO
- Each receiver has integrated IF amplifier with passband 18 – 29 GHz
- Four COTS F-band low noise RF amplifiers (Noise Figure < 5 dB)
- G-band low-noise amplifiers
 - Space allocated in design
 - GSFC internal development
 - SBIR development through Virginia Diodes, Inc.

F-band mixer & IF LNA F-band RF I NA

Three antennas

One at 183 GHz

Bandwidth 172-183 GHz Beamwidth: 3.1 – 3.3 degrees over the bandwidth Sidelobes: ~30 dB below main lobe VSWR: <1.5:1

Polarization: dual linear

Two at 118 GHz

Bandwidth 108-119 GHz Beam width: 3.1 – 3.3 degrees over the bandwidth Side lobes: ~25 dB below main lobe VSWR: <1.5:1 Polarization: dual linear

Gaussian optics lens antenna with wire grid to separate polarizations

HyMAS Scanhead Computer Configuration

- "Surrogate IFP" used to develop communications and electrical interfaces with HyMAS electronics
- Maximum sampling rate from IFP is ~180 data frames per second
 - 52 Radiometer channels
 - 12 Housekeeping
- Time stamp of data using network time protocol (NTP) implemented on CoSMIR – applicable to HyMAS
- GUI development components, laboratory display of real time data Scanhead computer and surrogate IFP delivered to scanhead I&T

Plot and data display functions for testing HyMAS surrogate IFP using simulated data

Photo of surrogate IFP used to test electrical compatibility of HyMAS electronics

- Custom PCB Layout
- Input 48 VDC
- Output
 - +8 V @ 2.3A
 - +3 V @ 1.1A
 - 3.3 V @ 1.9A
 - +/- 12 V (future use)
- Computer power
 5 V @ 1.75 A
- Heater power
 48 V @ 8 A

Power board is integrated and tested with receivers

- HyMAS: Motivation and Overview
- Intermediate Frequency Processor (IFP)
- Receiver Front-End Electronics
- Airborne Instrument Accommodations
 - Current and Future Work

HyMAS Scanhead Mechanical Integration

Layout facilitated by computer aided design

Partial assembly of HyMAS electronics

End-view of receivers w/ brackets to support waveguide

Antennas and receivers fit within drum envelope

HyMAS Scanhead Assembly

- The hyperspectral microwave receiver offers profound atmospheric sounding performance in a small package
- IFP technology offers two order of magnitude improvement in the size of the radiometer back end
 - Enables cubesat/smallsat implementation
 - Enables hyperspectral microwave operation with very large aggregate bandwidth (necessary for optimum performance)
- Program conclusion in August with complete airborne sensor ready for demonstration flights
- Technology infusion already started (MicroMAS-2, MiRaTA, NAST-M, and others)