Developing the CO₂ Sounder Lidar as a candidate for ASCENDS under the IIP-10 Program

James B. Abshire

Haris Riris, Graham Allan, Jeffrey Chen, Tony Yu, Bill Hasselbrack, Anand Ramanathan, Jianping Mao, Michael Rodriguez NASA - Goddard Space Flight Center Greenbelt MD 20771

> Presentation to: 2015 NASA ESTF Conference

> > June 24, 2015

*- Support from: NASA ESTO IIP-10 & QRS programs ASCENDS Pre-formulation Activity, Goddard IRAD program

James.B.Abshire@nasa.gov

Atmospheric CO2 & Earth's Carbon Cycle

Challenges:

• Fluxes of great interest produce only very small signatures in atmospheric CO₂ (typ. < 1 of 400 ppm, or < 0.25%)

• Areas of interest are distributed globally (including high latitudes, often with haze or clouds

• Arctic and southern oceans are in darkness almost half of each year

Major Questions about CO2 Sinks: Is considerable uncertainty in locations, strengths, dynamics & evolution with time => Space Observations (OCO, ASCENDS)

Lidar Measurements of Greenhouse Gases

ASCENDS Mission Overview

CO₂ Sounder Lidar A pulsed IPDA lidar for CO₂ on NASA DC-8

CO2 Sounder Characteristics:

Optimized as space instr. Simulator

- 25 uJ/pulse at 10 KHz (250 mW)
- 30 λ 's/line, 300 Hz sweep rate
- 20 cm dia. receiver telescope
- Detector, backscatter profile recorder:
 - <2014: NIR PMT (~4-8% QE) Photon counting MCS ≥ 2014: HgCdTe APD (QE ~70%) Analog digitizer (10 Hz)

6-18-15

2011, 2013, 2014 ASCENDS Flights

Objectives: Measure CO2 columns over a variety of topographic targets & under varying atmospheric conditions with lidar candidates & in-situ sensors

7 science flights over different regions, topography + degrees of cloudiness Altitudes: 3-13 km (in ~3 km steps) + spirals to near surface

CO2 Sounder for NASA's ASCENDS Mission

CO₂ Sounder Approach: Airborne CO₂ Line Sampling & Absorption line analysis

Measurement Approach & CO₂ Sounder Retrieval Algorithm (Ramanathan & Mao)

• Are many critical elements for a lidar for ASCENDS

- The lidar method & retrieval algorithm are key
- They drive the laser & receiver design, & their parameters
- Have addressed all these during this IIP
- We found that sampling the CO2 line rapidly at multiple wavelengths is important:
- Provides information to solve for and eliminate biases
 - Allows assessing line fits
 - Allows a robust measurement

CO₂ Sounder - detecting boundary layer enhancement 2013 Flight over California Central Valley

2014 CO₂ Sounder Lidar (Graham Allan, Anand Ramanthan, Kenji Numata)

Improvements for 2014 ASCENDS flights:

- 1. Step-locked CO2 seed source
- 2. Wider wavelength sampling across CO2 line
- 3. Optimized wavelength spacing
- 4. HgCdTe APD detector in receiver
- 5. Analog digitizer data recording
- 6. 10 Hz recording & retrieval resolution

6-18-15

CO2 Sounder for NASA's ASCENDS Mission CO2 Sounder for NASA's ASCENDS Mission

Precision Step-Locked CO2 seed laser (Jeff Chen and Kenji Numata)

Features

- DS-DBR laser is dynamically offset-locked to master DFB laser using optical phase-locked loop
- Frequency-stepped pulse train carved by MZM and subsequently amplified.
- Effective optical frequency noise of laser was < 0.2 MHz

Status

- Published design & US patent pending
- Used successfully with 30 λ's in CO2 Sounder in FY14 airborne campaign
- Very flexible in # of wavelengths & wavelength set points

Step locked laser in DC-8 rack

CO2 cell for master laser locking

- Highly sensitive 4x4 element HgCdTe APD array developed by DRS
- Pixels are square, 80 um on a side
- 400-4000 nm spectral response
- Operates inside a mini-dewar/crycooler assembly.
- ~ 7 MHz Electrical bandwidth
- Delivered to GSFC in April 2013

- · Results from evaluation of detector sensitivity
- The pixels have QE > 70%
- Noise equivalent power is ~0.4 fW/root (HZ).
- > 16 times more sensitive than PMT used previously
- Analog response, > 1000:1 linear dynamic range

Follow on work:

Copies for GSFC CH4 Lidar, LaRC 2 um lidar Spare detector chips being made for future use

6-18-15

Flight Pattern: (mdd) .000 390 00 370 00 350 Square pattern over Iowa at 3 altitudes Spiral down over Iowa West Branch tower SF5(lowa) 12 350 2014-09-03 15 Meas. DOD Lid. Range. 2 10 Ground Elev. Altitude (km) 8 ik Mf oli altitude (km) 1.5 DOD 6 4 0.5 in situ profile 2 in situ column Lidar mean Lidar "profile" 0 0∟ 385 0 390 395 15:00 400 40 Time (UTC hours) CO₂ Conc. (ppm)

- Very good agreement between lidar average & in-situ above 8 km
- Lidar measurements show CO2 drawdown (decrease with altitude) seen by AVOCET

Very Accurate Column Retrievals over desert - through aerosol layers

杰

SCENDS

Measured Horizontal Gradient in XCO₂ (SF2 over Northern NV with ~12 km ground track avg.)

- Results show a N-S gradient over Nevada from 3 independent flight altitudes
- Gradient is ~1 ppm/deg. lat. $(R^2 > 0.4)$
- Gradient matches that seen in a PCTM*

(*-Parameterized Chemistry Transport Model)

See poster by A. Ramanathan

- Our airborne CO2 Sounder lidar has been very valuable we continue to improve it
- Bias was < 1.2 ppm, for 7 of 9 flight segments in 2014, at altitudes > 7.5 km
- Despite modest (0.25W) laser power, we have achieved 0.9 ppm precision over desert

Recent measurement summary:

Flight	Surface	Shot Noise limit	Measured precision	Bias	Comments	
2011 Railroad Valley	Desert	1.5 ppm	2.7 ppm	0.4 ppm		
2013 Central Valley	Desert/ vegetation	0.7 ppm	1.5 ppm	0.1 ppm	Best with PMT. Limited by detector dynamic range.	
2014 Central Valley	Desert/ vegetation	0.45 ppm	0.9 ppm	0.3 ppm	Limited by optical losses, electronic & speckle noise	
2014 Forest (P. Northwest)	Forests	0.5 ppm	1.3 ppm	1.0 ppm*	Limited by optical losses, electronic & speckle noise, *-WV est.	

Ongoing work:

- Making lidar receiver improvements for January 2016 campaign
- Expect to enhance precision ~x2 to ~0.5 ppm

6-18-15

CO2 Sounder fo

20W ave power

Laser for CO₂ Measurements from Space 3 stage MOPA Design (Tony Yu & Jeff Chen)

CO2 Sounder for NASA's ASCENDS Mission

GSFC

Space Laser Power Amplifier: Single Planar Waveguide Approach (Raytheon)

Design:

- 4-pass optical amplifier
- Free space coupled
- Optical energy gain ~x100
- LD pumped at 974 nm
- Designed for x100 gain:
- both 1572 and 1529 nm
- Size: 24" x 18" x 6.4"

GSFC

PWG amplifier module

Alexander Betin/Raytheon Anthony Yu/554

ASCENDS Mission: Acceleration and demonstration of key space lidar technologies **Raytheon** Space and Airborne Systems A. Yu 18

Space Laser Transmitter using Fiber laser amplifiers

Optional **Amplitude & Phase** Modulation Module 1 x 2 n₄ Pulse Train splitters 1 x 4 EDF 1 us 100 µs splitter hase frequenc _{шш} n₁–n₈ MZM EDF/ Slave DS-DBE Master DEF Frequency-steppe **Pre-Amplifier Module** Trigge Seed Module Pulse generato Filter MZM Mach-Zender Modulator Distributed feedback diode laser Digital supermode Distributed Bragg reflector diode laser EDFA FDF **Er-Doped Fiber Amplifier** Electrical Signal Power Amplifier Module **Optical Signal**

Seed and preamp stages

Power Amplifier stages

Status:

- Approach under development now, 30 month effort
- Objective: Develop fiber laser with space power to TRL 6
- Mark Stephen/GSFC, PI , partnered with Fibertek
- Jointly supported via ESTO ATI-QRS award & Goddard IRAD
- Joe Famiglietti ESTO task manager

EDFA Power Scaling for Space for CO₂ Sounder (IIP-10 funded experiments at 1572 nm)

- All-PM, All-fiber MOPA, All Commercial Components
- External PM Phase Modulator for line broadening
- PM AOM for high extinction ratio pulse carving (~50dB)
- 4-stage amplification for low noise and high-gain
 - Commercial PM LMA fiber in last amplifier stage
 - ~976nm diode CW pumping
- Similar to EDFA developed by Fibertek at 1563 nm & reported in SPIE

CO2 Sounder for NASA's ASCENDS Mission

Airborne O2 Sounder Lidar (Haris Riris & Mike Rodriguez)

Similar approach as CO2, but measuring O2 line pair near 765 nm.

Parameter	Value		
Center λ	764.685 nm		
PRF	10 KHz		
Pulsewidth	~200 ns		
Energy	~ 1.5-2.0 µJ		
Bin Width	10 ns		
Divergence	~110 µrad		
FOV	200 µrad		
Bandpass	0.8 nm		
Averaging T	125 ms		
Det. QE	~ 50%		

ASCENDS Mission: Acceleration and demonstration of key space lidar technologies

O2 Sounder - 2013 Central Valley Flight (Haris Riris & Mike Rodriguez)

ASCENDS Mission: Acceleration and demonstration of key space lidar technologies

Summary

- Advanced measurement approach & demonstrated accurate CO₂ retrievals
- Developed technologies needed for scaling airborne CO₂ Sounder lidar to space:
 - Rapidly tuned λ -locked laser seed source
- Fiber laser amplifier stage with spaceneeded power
- HgCdTe APD detector: >70% QE, photon counting sensitivity
- Demonstrated improved airborne CO2 measurements from 3-12 km:
 - Participated in 2011, 2013, 2014 ASCENDS airborne campaigns
 - Showed accurate CO2 measurements over all ASCENDS-relevant surfaces
 - Demonstrated 1st "CO2 cloud slicing": measurements to cloud tops to estimate surface fluxes
- Demonstrated airborne O2 lidar column measurements, precision < 8 mbar

Ongoing work:

- ASCENDS ad-hoc SDT
- ASCENDS airborne campaigns
- Space Laser development via ESTO ATI-QRS & GSFC

More information:

Papers & presentations on the CO₂ Sounder Website:

http://ssed.gsfc.nasa.gov/co2sounder/

Thank you to the ESTO IIP Program for the support !

BACKUP

http://svs.gsfc.nasa.gov/vis/a030000/a030500/a030515/

375	380	385	390	395
0.0	1.5	3.0	4.5	6.0

Column CO₂ Mixing Ratio (ppmv) Column CO Burden (10¹⁸ molec cm⁻²)

Simulated Atmospheric Carbon Concentrations

CO2 Line Sampling and fits: ASCENDS Flights in ≤ 2013 & 2014

≤ 2013

2014

CO2 Sounder for NASAS ASCENDS Mission

Abshire et al. - 27

CO₂ Sounder example Lidar measurements vs in-situ for 2011 flights

- Comparison of lidar measurements for 4 different flights
- Challenging for GOSAT/OCO-2 to make measurements for these conditions
- Lidar measurement error bars are +/- 1 std dev for 10 sec ave
- Excellent accuracy (very low bias)

remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing

GSFC

Airborne Measurements of CO₂ Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

James B. Abshire ^{1,*}, Anand Ramanathan ², Haris Riris ¹, Jianping Mao ², Graham R. Allan ³, William E. Hasselbrack ³, Clark J. Weaver ² and Edward V. Browell ⁴

SF4 – OCO-2 Under flight – retrievals through haze Atmospheric Backscatter Profiles & retrievals

CO2 Sounder for NASA's ASCENDS Mission

Evolution

CO₂ Laser Sounder for the ASCENDS Mission

Progress:

Initial concept (2001) & lab measurements White paper to RFI - helped lead to ASCENDS Field measurements at CO2 tower (2007) ✓ 1st Space Instrument Study (2008) CO2 Airborne demonstrations (2008) ASCENDS joint flight experiments (2009) 2nd Space Instrument Study (2009) ✓ ASCENDS flight exp' ts on DC-8 (2010) Airborne measurements of O2 absorption (2010) 2011 ASCENDS campaign & improved analysis Fiber amplifier BB shows space-needed power (2012) Airborne measurements over snow & trees (2013) HgCdTe detector shows record sensitivity (2014) ASCENDS flights: locked seed & HgCdTe APD (2014) Earth Science Technology Office

