National Aeronautics and Space Administration

Airborne Pulsed 2-Micron Direct Detection Lidar for CO₂ Column Measurement

Upendra Singh¹, Jirong Yu¹, Mulugeta Petros¹, Tamer Refaat¹, Ruben Remus¹, James J, Fay¹, and Karl Reithmaier²

¹NASA Langley Research Center, MS 433, Hampton, Virginia ³Science System & Applications, Inc, One Enterprise Parkway, Hampton, Virginia * Upendra.N.Singh@nasa.gov

Acknowledgement: NASA Earth Science Technology Office (ESTO)

www.nasa.gov http://engineering.larc.nasa.gov/

Outline

Objective

- Develop a high energy double-pulsed 2-micron direct detection IPDA lidar system to demonstrate airborne atmospheric CO₂ measurements
 - Background
 - Spectroscopy and IPDA simulation
 - 2-micron double pulsed IPDA lidar
 - IPDA Ground Testing
 - IPDA lidar Airborne Demonstration
 - Future Work
 - Summary and Conclusions

Carbon Dioxide Concentration

Credit: NOAA/Scripps Institution of Oceanography

Anthropogenic activities have added >200 Gt C to the atmosphere since 1958

 \circ less than half of this CO₂ is staying in the atmosphere

 \circ where are the missing CO₂ sinks?

Development of a Double-Pulsed 2-micron Direct Detection IPDA Lidar for CO₂ Column Measurement from Airborne Platform

PI: Upendra N. Singh, NASA LaRC

<u>Objective</u>

- Develop, integrate and demonstrate a 2-micron pulsed Integrated Path Differential Absorption Lidar (IPDA) instrument CO_2 Column Measurement from Airborne platform
- Conduct ground validation test to demonstrate $\ensuremath{\textit{CO}_2}$ retrieval
- Conduct engineering test flights to demonstrate ${\rm CO_2}$ retrieval from UC-12 aircraft
- Conduct post flight data analysis for the purpose of evaluation of ${\it CO}_2$ measurement capability

Mobile and Airborne $2\mu m$ IPDA LIDAR system

Approach:

- Repurpose existing hardware including previously developed transmitter, receiver and data acquisition system
- Complete fabrication of transmitter, wavelength control and receiver units assembly
- Integrate existing and to be developed subsystems into a complete breadboard lidar system
- Fabricate a mechanical structure and integrate completed subsystem
- **Co-Is/Partners:** Jirong Yu, Mulugeta Petros, Syed Ismail, NASA LaRC

Key Milestones

Design of laser transmitter assembly
Design, manufacture and assembly of receiver
Integrate subsystems into breadboard lidar system
Conduct ground test of the integrated lidar assembly
Integrate lidar system on UC-12 aircraft
Conduct post flight data analysis
10/12
10/12
10/12
10/12
04/13
04/13
06/13
07/13
07/14

TRL_{in} = 3 TRL_{out} = 5 (AIRCRAFT)

2-μm Pulsed Direct Detection CO₂ IPDA (Airborne)

Integrated 2 μ m Pulsed IPDA Lidar for Airborne CO₂ Column Measurement

Phase III

Spectroscopy

- Standard models are used for estimating optical depth, return pulse strength, SNR and errors for any operating condition.
- Modeling and meteorological data are used for XCO2 derivation

0.61145

3

2

0.94553

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1

Optical Depth

IPDA Ground Testing: IPDA Integration

IPDA Ground Testing: Setup & Measurement

- IPDA ground testing conducted at LaRC on 1/24/2014.
- Modeled CO₂ optical depth was calculated from in-situ sensor (LiCor) and CAPABLE measurements.
- IPDA measured CO₂ optical depth was obtained from
 - PIN laser energy monitor with the hard target return.
 - Residual scattering (window reflection) with the hard target return.

IPDA Ground Testing: Setup & Measurement

Results from residual scattering better correlate to modeled differential optical depth Residual scattering provides self-calibration capability for the CO₂ IPDA lidar instrument

IPDA Ground Testing: Setup & Measurement

- Results indicated profile matching with 8 ppm offset between in-situ and IPDA dry mixing ratio measurements
- Offset attributed to detection system nonlinearity (most probably digitizer)

Aircraft Configuration: Instrument

10 Flights in March & April 2014

Date	Purpose	Duration	Location
March 20	Instrument Check Flight	2.1 hr	VA
March 21	Engineering	2.7 hr	VA
March 24	Engineering	3.0 hr	VA
March 27	Early morning	3.0 hr	VA
March 27	Mid-afternoon	2.5 hr	VA
March 31	Inland-Sea	2.5 hr	VA, NC
April 02	Power Station	2.4 hr	NC
April 05	With NOAA	3.7 hr	NJ
April 06	Power Station	3.0 hr	NC
April 10	Late afternoon	2.3 hr	VA

- Aircraft had temperature, pressure, humidity sensors, LiCor and GPS
- Some of the flights were supported by balloon launches

IPDA Airborne Testing: Sample Return Signals High gain channel + High gain Window, 100-Avg 350 1.2 3000 52 2500 Altitude [m] 0005 QОр 0.8 0.6 1500 - US Model -O-IPDA Model 1000 High Gain Channel + Window Measurement Model 500 L 0.2 0.6 0.8 1.2 1.4 21:15 20.00 20:15 20:30 20:45 21:00 dOD Time [hr:min]

- IPDA airborne testing was conducted on April 10, 2014.
- Modeled CO₂ optical depth was calculated from CO₂ in-situ sensor (LiCor) and aircraft meteorological sensors at different altitude.
- Another modeled CO₂ optical depth was calculated using the US Standard Atmosphere at different altitude.
- Measured CO₂ optical depth was calculated from the IPDA data (black and blue dots), with 100 shot average, at different altitude.
- Energy monitoring through residual scattering and vegetation/soil ground hard target.

IPDA Airborne Testing: Sample Return Signals

Signal [V]

- NOAA air sampling and IPDA • lidar optical depth comparison.
- Return signal samples from • different altitudes up to 6km.
- IPDA range measurements • compared to on-board GPS.

Triple-Pulsed 2-μm Direct Detection Airborne Lidar for Simultaneous and Independent CO₂ and H₂O Column Measurement – Novel Lidar Technologies and Techniques with Path to Space

PI: Upendra Singh, NASA LaRC

<u>Objective</u>

- Demonstrate and validate simultaneous and independent measurement of the weighted-average column dry-air mixing ratios of carbon dioxide (XCO_2) and water vapor (XH_2O) from an airborne platform
- Design and fabricate a space-qualifiable, fully conductively-cooled, triple-pulsed, 2- μm laser transmitter
- Design and develop wavelength control system for rapid and fine tuning of the three sensing lines of the CO_2/H_2O Integrated Path Differential Absorption (IPDA) lidar
- Integrate laser transmitter with receiver to develop the triple-pulsed 2- μ m direct detection IPDA lidar
- Conduct extensive ground and airborne column CO_2/H_2O measurement and validate with *in-situ* sensors

An example of space-qualifiable, fully conductively-cooled $2-\mu m$ laser packaging from ACT 11

Integrated 2- μ m CO₂/H₂O Airborne packaged IPDA Lidar

<u>Approach</u>

4/14

Team with industry to utilize extensive space-flight laser development expertise to build a unique triple-pulsed 2-μm laser
Develop a novel, lightweight, frequency agile, wavelength tuning and locking system for triple-pulsed IPDA Operation
Integrate state-of-the-art laser transmitter to the existing and upgraded receiver system and strengthen for stable flight operation
Conduct initial ground testing and validation of the IPDA lidar from a mobile lidar trailer
Conduct extensive ground and airborne column CO₂/H₂O measurement and validate with in-situ sensors

<u>Key Milestones</u>

and final report

• Complete the preliminary triple pulse laser optical, mechanical, thermal and structure design	12/14
 Complete laser wavelength control unit design Complete laser maniter degnad method blr seten degnad beadouct testig 	03/15 09/15
 Complete fabrication and testing of laser transmitter and wavelength control unit 	
	07/16
 Integrate laser transmitter with wavelength control unit 	09/16
 Complete lidar integration, and ground test TRLin = 3 TRLout = 5 	03/17 06/17
 Conclude CO₂/H₂O airborne lidar demonstration 	

$2\text{-}\mu\text{m}$ CO $_2$ IPDA Path to Space

ogy with sp	pace requirement	
chnology	Projected Space	
	Reqirement [2]	
smitter		
aser	Two Lasers	
-Cooled	Column CO ₂ Space	
able laser	Mission	

T 11 1 C	COO + A + CA + A + O		4 1 1	
I anie I Comparison (of CLD state-ot-the-art /_IIm	current and proposed	$\mathbf{Technology}$ with snace	reallirement
	OI CO/State-OI-the-art 2-min	current and proposed	i teennology with space	requirement
	-		0,	

	Current Technology	Proposed Technology	Projected Space Reqirement [2]	
	Laser Transmitter			
	Single Laser	Single Laser	Two Lasers	
Technology	Liquid-Cooled, Airborne laser	Conductively-Cooled Space Qualifiable laser	Column CO ₂ Space Mission	
Technique	Double-Pulse	Triple-Pulse	Single-Pulse	
Laser Wavelength (µm)	2.051	2.051	2.051	
Pulse Energy (mJ) 1 st /2 nd /3 rd Pulse	100/30 Double Pulse	50/15/5 Triple Pulse	40/5 Single Pulse	
Pulse Repetition Rate (PRF)	10	50	50	
Power (W)	1.3	3.5	2.25	
Pulse Width FWHM (ns)	200	30-100	50	
Optical to Optical Efficiency (%)	4.0	5.0	5.0	
Wall Plug Efficiency (%)	1.44	2.1	>2.0	
Delay between pulses (200 µsec)	200	200	250+/-25	
Transverse/Longitudinal Modes	TEM ₀₀ /Single Mode	TEM ₀₀ /Single Mode	TEM ₀₀ /Single Mode	
Pulse Spectral Width FWHM (MHz)	2.2	4-14	> 60	
Beam Quality (M ²)	2	2	< 2	
Frequency Control Accuracy (MHz)	0.3	0.3	0.2	
Seeding Success Rate /Spectral Purity (%)	>99/99.9	>99/99.9	>99/99.9	
	Detector			
Material	InGaAs	HgCdTe	N/A	
Structure	Pin photodiode	eAPD	APD	
Quantum Effficiency (%)	68	80	75	
Excess-Noise-Factor		1.1	1.5	
Noise-Equivalent-Power (fW/Hz ^{1/2})	200	8	100	

- A 2-micron double-pulsed, high energy IPDA lidar system has been developed
- 2-Imm CO₂ IPDA lidar modeling estimates instrument performance and calculates weighting function for deriving XCO2.
- Preliminary analysis of ground based hard target measurement demonstrates the 2-Imm CO₂ IPDA lidar capability of measuring CO₂ optical depth and deriving XCO2.
- The IPDA instrument was operated on NASA B-200 aircraft through different conditions
- IPDA capability was demonstrated from airborne platform
- The measurement includes ranging capability with 1 m precision
- Observed single-shot signal-to-noise ratio from hard target larger than 200
- Detailed data analysis is in progress
- Future work towards developing a triple-pulsed IPDA lidar system is progressing

2-Imm IPDA Lidar Team members

C. Boyer, B. Culliton, L. Cowen, J. Fay, W. Johnson, S. Johnston, M. Jones, E. Modlin, L. Murchison, I. Pang, P. Manhart, T. Notari, M. Petros, K. Reithmaier, T. Refaat, R. Remus, D. Reichle, S. Salvatore, U. Singh, J. Yu

Publication List

- J. Yu, M. Petros, K. Reithmaier, Y. Bai, B. Trieu, T. Refaat, M. Kavaya, U. Singh and S. Ismail, "A 2micron pulsed integrated path differential absorption lidar development for atmospheric CO₂ concentration measurements", 26th International Laser Radar Conference (ILRC), Porto Heli, Greece, 2012.
- U. Singh, J. Yu, M. Petros, T. Refaat and K. Reithmaier, "Development of a pulsed 2-micron integrated path differential absorption lidar for CO₂ measurements", Invited, Proc. of SPIE, Vol. 8872, 997209, 2013.
- U. Singh, J. Yu, M. Petros, T. Refaat, K. Reithmaier, T. Kurosu, C. Miller and S. Dinardo, "Double-pulsed 2-micron integrated path differential absorption lidar development and column CO₂ measurement from ground and airborne platform", 10th International Workshop on Greenhouse Gas Measurements from Space, ESA-ESTEC, Noordwijk, The Netherlands, 2014.
- U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay and K. Reithmaier, "Column CO₂ measurements from an airborne solid-state double-pulsed 2-micron integrated path differential absorption lidar", International Conference on Space Optics, Tenerife, Canary Islands, Spain, 2014.
- J. Yu, M. Petros, T. Refaat, K. Reithmaier, R. Remus, U. Singh, W. Johnson, C. Boyer, J. Fay, S. Johnson and L. Murchison, "2-micron pulsed direct detection IPDA lidar for atmospheric CO₂ measurement", First International Conference on Space-Based Lidar Remote Sensing Techniques and Emerging Technologies, Paris, France, 2014.
- 6. T. Refaat, M. Petros, R. Remus, J. Yu and U. Singh, "Laser energy monitor for double-pulsed 2-⊠m IPDA lidar applications", Proc. of SPIE, Vol. 9246, 924619, 2014.
- U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay and K. Reithmaier, "Airborne 2-micron doublepulsed integrated path differential absorption lidar for column CO₂ measurement", Proc. of SPIE, Vol. 9246, 924601, 2014.
- 8. T. Refaat, M. Petros, R. Remus, J. Yu and U. Singh, "Self-calibration laser energy monitor validation for double-pulsed 2-Imm CO₂ IPDA lidar applications", in preparation, Optical Engineering.

Thanks for your Attention