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ACES Scientific Motivation

The ASCENDS CarbonHawk Experiment Simulator (ACES) is an
Instrument Incubator Program (IIP) project that seeks to advance
technologies critical to measuring atmospheric column carbon
dioxide (CO,) mixing ratios from space in support of the ASCENDS
(Active Sensing of CO, Emissions over Nights, Days, and Seasons)
Decadal Survey mission:

* Passive satellite measurements cannot make retrievals of CO,
column densities to the surface at night, at high latitudes (i.e.
northern Europe during winter and over the poles), and through
cirrus or in presence of scattered clouds.

* Active measurements using lidars do not have these limitations,
and they can therefore fill these data gaps and aid in the
refinement and understanding of the global carbon cycle budget.



Multifunctional Fiber Laser Lidar (MFLL)

1.57-

+ Robust, Efficient & Modular Fiber Laser
Transmitter & Receiver

+ Strong Rejection of Common Mode
Reflecivity, Attenuation & Noise
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— Simultaneously transmits two
wavelengths (I, / | ) reducing
atmospheric noise & eliminating
surface reflectance variations.

— Approach is independent of the
system wavelength and allows
simultaneous CO, & O, (1.26
mm) measurements for deriving
mixing ratio (XCO,).
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Multifunctional Fiber Laser Lidar (MFLL)
Intensity-Modulated Continuous-Wave (IM-CW)
Measurement Technique

Progression of Transmitted and Received Intensity-Modulated Waveforms
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Multifunctional Fiber Laser Lidar (MFLL)
Intensity-Modulated Continuous-Wave (IM-CW)

Measurement Technique
Offline backscattered return signal time-series:  Single profile from time-series
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Technology Challenges

ACES is advancing 4 key technology areas:
(1) Advancement of detector and trans-impedance amplifiers (TIAs)

- Increase detector/TIA electronic bandwidth to enable development of more
advanced modulation waveforms

- Package for unattended, high-altitude operations

(2) Development of advanced 1.57 (CO,) and 1.26 micron (O,) fiber laser transmitters
- Increase transmit power and efficiency at 1.57 microns
- Develop new, high efficiency fiber laser amplifier at 1.26 microns

(3) Simultaneous operation of multiple transmitter and multiple telescope-apertures

- Demonstrate column CO, retrievals with alignment of multiple laser beams
transmitting simultaneously in the far-field

- Evaluate performance of three compact apertures vs. single larger aperture
(4) Development of advanced cloud/aerosol discrimination algorithms

- Advance algorithms to mitigate effects of low optical depth clouds and
distributed scattering layers (i.e. aerosol layers) on the CO, column retrievals



ACES concept demonstration strategy:

* Detector/TIA advancement completed —
in January, 2013 —

— Detector subsystem completed first test
flights on the DC-8 with the MFLL
instrument in February/March, 2013

e Laser transmitter advancement and all |
other subsystems completed by —
February, 2014 S

— Ground tests of fully integrated system
completed at NASA Langley laser range
facility March-May, 2014

* Flight tests of fully integrated system ~
completed on the HU-25 in July, 2014 |




Detector Subsystem

Exelis/LaRC fully characterized and integrated super pixel detector (8x8 array)
from DRS Technologies into tactical dewar and developed custom TTIA

Criteria for 1, <40 pA @ -12V (internal avalanche photodiode (APD) gain of
1080) yields map with 59 good diodes — diodes stitched together to form single

mega pixel

Detector subsystem performance
near original goal of 5 MHz: 3 dB
point measured bandwidth 1s ~4.9
MHz @ gain of 1076

NEP: 2.4 fW/Hz!?

Excess Noise Factor: ~1.1

Peak value of 17.4dB was offset to 0 dB
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Detector installed in tactical
dewar to allow for unattended
operations

* Continuously cooled at 77 K
(selectable 60 K to 100 K)

* Complete detector
subsystem 1s shown,
including detector, dewar,
cooler, optical interface,
bandpass filter, TIA, thermal
control, and power supplies.
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CO, (1.57 microns):

e Three fiber-coupled distributed feedback
(DFB) seed lasers ——

* CO, absorption cell and Pound-Drever-Hall
(PDH) technique for locking

e Three Erbium-Doped Fiber Amplifiers (each
10 W average, 20 W peak) — 3 transmitted

beams i
* Wavelength tunable within +/- 50 pm (6 \

GHz) from line center

* Wavelength stability: locked within <0.1 pm
(<12 MHz); tests limited by wavemeter
resolution

O, (1.26 microns):
 Two seed DFB lasers

*  One amplifier — Exelis Advanced Component
Technologies (ACT) project (~3 W average, 6
W peak) — 2 transmitted beams

10



Telescopes and Beam
Steering

Risley prism beam steering using custom
beam steering boards and software
Custom collimator mounts and beam
expanders
F4.54 Ritchey-Chrétien telescopes (77
diameters)
Test data and lab measurements show
specifications met for focus & boresight:
* Boresight spec: aligned to within 25
microradians
* Boresight measured: aligned to < 2.5
microradians
Beam Divergence: ~350 microradians
Telescope FOV: 496 microradians
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Testing at Langley Ground
Range Facility

Fully integrated imstrument | 1l AC T
tested at ground range facility: | §i) — EEEE

e Various targets with known ACE
reflectances & ranges used W
to calibrate ACES signals i g7
and simulate intervening "
thin clouds along 860 meter /;
range

* Tests used to optimize and
understand performance of
multiple transmitters, — EAN\7 AL %
multiple telescopes, and
data acquisition hardware
and software

e Test results indicated ACES
ready for flight tests
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In situ instruments and sampling

approach
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Flight Summary: 17.4 flight
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Data recorded at multiple altitudes over land and ocean

surfaces with and without intervening clouds.
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Flight Summary: 17.4 flight
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Preliminary Results: Signal-to-

Noise Ratios

* 14x increase 1n power aperture product over MFLL 1s
observed and consistent with simulated returns over
ocean and vegetated surfaces
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amplitude

IM-CW technique can measure backscattered returns through
optically thin clouds, allowing for retrievals of column CO, mixing

E%tios to surface and cloud tops
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ACES team studied hardware and mathematical trades of different
modulation techniques

Different modulations tested on different HU-25 flight legs for comparison
Binary Phase-Shift Keying (BPSK) modulations eliminate sidelobes and
increase measurement accuracies 1



* Advanced deconvolution techniques resolve cloud and forest features:

— Fourier transform reordering (Interpolated profile)

— Richardson-Lucy deconvolution (Enhanced profile) .
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Future Directions

* Continue data analysis to fully quantify instrument
performance

* Continue flight testing of new modulation algorithms,
measurement techniques, and hardware improvements
— Deconvolution techniques for clouds and forest canopies
— Operational tests of retrievals with sideline wavelengths
— Instrument automation for UAV operations
* Continue Technology Readiness Level (TRL) advancement
and space qualification of ASCENDS technologies

— Example: Small Business Innovation Research project with
Fibertek for laser amplifier advancement



Summary

The ACES team 1s advancing technologies critical to making CO,
column mixing ratio measurements from space.

ACES recorded meaningful data at multiple altitudes over land and
ocean surfaces, with and without intervening clouds during its first
test flights.

Preliminary data show that the system performed reliably across all
flight situations, consistent with performance simulations.

Data analysis and technology advancement efforts are continuing.



Acknowledgements

Thank you to the NASA Earth Science Technology Office (ESTO)
for funding this IIP. Also thank you to the NASA Headquarters
ASCENDS Program and NASA Langley for support.

* The authors wish to thank the many contributions to this work from the rest
of the ACES team at Exelis (Douglas McGregor, Nathan Blume, Michael
Braun, Mark Shure, Mark Neal, Joe Bender, Steve Horney), Welch
Mechanical Designs (Wayne Welch), Oklahoma University (Berrien Moore,
Sean Crowell), the University of Melbourne (Peter Rayner), NP Photonics
(Arturo Chavez-Pirson), NASA Langley (Chuck Antill, Michael Kissam,
Melissa Yang, Jim Plant, Yonghoon Choi, Narasimha Prasad, Keith Murray,
Tony Notari, Craig Cleckner, John Barrick, Ali Aknan, Janet Dail, Carl Mills,
Chris Herdey, Rebecca Stavely, Nick Vitullo, Marie Avery), and the aircraft
support teams at Langley Research Center and Armstrong Flight Research
Center.



Backup Slides



ASCENDS CarbonHawk Experiment Simulator (ACES)

PI: Michael Obland, NASA LaRC

Objective
* Demonstrate measurements of column CO, mixing ratios with
a high-altitude airborne instrument architecture scalable to
the ASCENDS mission requirements y e
f )
i
* Technologies include a high bandwidth detector, a multi- :
aperture telescope, advanced algorithms for P \
cloud/aerosol discrimination, and high efficiency CO, ,r—»& e ) |
and O, transmitters . - /—< ‘ !
5 . \ l
X

* Deploy instruments on the DC-8 and Hu-25 aircraft to \Tﬁ/

demonstrate discrimination of surface returns from clouds
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Approach Key Milestones
* Improve existing CO, measurement capability by: + Complete requirements, architecture, design 11/11
* Advancing detector, receiver, and transmitter + Complete detector integration 07/12
gom f;ﬁg{fe‘a ,fr?;uglg';g; Signal fo hoise performance + Complete detector subsystem 12/12
. Improving spectroscopic models fo support * Validate and test detector on DC-8 03/13
wavelength optimization + Deliver telescope subsystem 09/13
+ Advancing techniques and algorithms to allow for * Complete CO, transmitter subsystem 08/13
cloud/aerosol discrimination and ranging * Complete O, transmitter subsystem 08/13
* Conduct ground and flight tests of the instrument * Validate and test on Hu-25 07/14
components and subsystems to quantify instrument
performance
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