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Background 
•  A 40 W, 50-200 Hz, 1 µm laser can be the pump for multiple 

lidar based Earth Science measurements 
–  High pulse energies in the IR, visible, and UV 
–  Next generation cloud and aerosol (IR, green, and UV) 
–  Winds (green and UV) 
–  Ocean color (green) 
–  Ozone 

•  Single-frequency is required for many applications 
•  Single-frequency improves reliability for all 
•  Current airborne demonstrators meet most requirements 

for a space-base mission 
–  Needs conversion to fully conductively cooled 
–  UV lifetime needs to be demonstrated 
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Primary Program Objective 
Single-Frequency UV Demonstrator 

•  Focus is on higher pulse energies at lower rep rates 
–  Typically require for aerosol and direct detection wind lidars 

•  Improved 1064 nm final power amplifier 
–  750 mJ/pulse @ 50 Hz, M2 < 2 

•  Fully conductively cooled Laser Optics Module (LOM) 

•  350 mJ UV conversion module with a lifetime goal of >109 
shots  

•  Testing to advance the LOM  design from TRL 4 to TRL 6 
–  Vibe & TVAC 

•  8 month life test of the pump laser and UV conversion 
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Secondary Program Objective  
532 nm Demonstrator 

•  Intermediate performance testing optimized for 532 nm 
output at 150 Hz 

–  170 mJ @ 532 nm 

–  80 mJ @1064nm 

–  M2 < 2 @ 532 nm 

–  M2 < 3 @ 1064 nm 

•  Demonstrates requirements for next generation of space-
based cloud and aerosol or ocean color lidar systems 
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Design approach 
•  Derived from current 

airborne designs 
–  Injection seeded ring 

oscillator 

–  Dual compartment 

–  Sealed and air 
pressurized 

–  Diode-pumped zig-
zag slabs 

•  All UV components in 
a hermetic, polymer 
free environment 
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Preamplifier 

Typical	  airborne	  laser	  design 

Electronics	  
module 

Ring	  
oscillator 

Power	  
amplifiers 

Periscope 

SHG	  oven 

THG	  oven 

Photodiode	  
module 

Isolator 

Oscillator	  compartment	  
layout 

Amplifier	  compartment	  
layout 

•  Internal telescope in UV box to reduce fluence on down stream optics 

•  Implement pure conductive cooling to an external thermal interface 
–  Power amplifiers mounted on LM walls 

•  Improved final power amp design 
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Final Power Amplifier 
Design and Test 
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Previous amplifier achieved energy, 
but spoiled beam quality 

•  2-sided pumped and cooled 
•  Previous pump on bounce design 

achieved >900 mJ pulse energies but 
with M2 > 2.5 

•  Pump spot size was too small. A 3 mm 
input beam fully overlaps each pump 
array 

•  Beam extended into edges of heated 
region resulting in higher order 
aberrations 

Pump-on-bounce amplifier 
Pump Diodes

Pump Diodes

Pump Diodes

Pump Diodes

Input Output 

910 mJ/pulse, 4.5 mm x 6.7 mm 

Mx
2 = 2.5 , My

2 = 2.5  
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Developed an “all-effects” 
amplifier model 

Non-sequential ray trace in TracePro 
produces absorption, gain and heat profiles 
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FEA in ANSYS produces temperature, 
stress, and deformation profiles 
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Analysis in MatLab produces dn/dT 
and deformation induced wavefronts 
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Diffractive propagation in 
GLAD finds 3D extraction, 
energy, beam quality 
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Mode, beam quality, pulse energy, and pulse shape were validated against 
real laser performance.  Good fidelity.  M2 is a little low but shows trends 

Meas. 

Model 

ESTF 2014 



9 

Final Amp Design: Higher power 
diodes pumping a larger footprint 

•  Mode and beam quality same as long slab 
•  200W bars derated to 150-175W, Still allows 

~120-150ms pumping and good efficiency 
•  Short slab with large patches selected for program 
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dn/dT and deformation induced 
wavefronts are ~ same as the long slab 

Twice the local heating, twice the 
deformation, but half as many bounces  
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Power Amp Is Built and 
Characterized 

•  Performed a weighted average over the probe beam 
shape to get the expected measured small signal gain. 
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Final Power Amp 

•  Actual measured small sigma gain is 6.5 
•  Difference can be explained by uncertainties 

in parameters, in particular sigma at elevated 
temperature 



11 

Laser Optics Module (LOM) 
Analysis and Design 
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Laser optics module (LOM) 
packaging approach 

•  A dual compartment box provides a low distortion center plane   

•  The dual compartment approach has been used successfully on 
several programs 

•  Need to eliminate liquid cooling in the mid-plane used in 
airborne laser designs. 
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FEA Analysis Used to Select 
Conductive Cooling Strategy 

•  Updated design must be fully conductively cooled 
–  All heat must be conducted to the canister wall 
–  To reduce distortion, amplifiers will be mounted directly to the wall 

at the cold-plate interface.  Resonator head is still on mid-plane. 
•  Investigated three concept: hexagonal 3-wall, rectangular 3-wall, 

rectangular 1-wall 

Distortion 
under 
pressure 

Temperature 
distribution 

Concept 1 Concept 2 Concept 3 

ESTF 2014 



14 

Final Design 
Single Wall Cooling 

•  All amplifiers are mounted on one wall 
•  Warm-up motion of resonator pump-head relative to resonator bench 

is still symmetric and small 
•  Mid-plane remains stable to pressure and rotation of the amplifiers is 

minimal. 
•  Simplifies system design and integration 

ESTF 2014 

Amp 1 Amp 3 Amp 2 

Ring 
oscillator 

UV 
module 
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Vibration analysis indicates 
selected design will perform well 

•  Using modified ICESat-2 flexures for the box. 
•  Optimized flexures to minimize the frequency of rigid body modes 

–  Flexures designed to resonate from 75 to 150 Hz band width 
–  3 translation and 3 rotation modes (6 total) 
–  Flexures will survive GEVS 14.1 GRMS with notching. 

•  Optimized mounting of the resonator bench to the mid-plane to maximize 
the frequency of the internal mid-plane drum mode 

–  Since this is the largest bench in the laser, it was light weighted and stiffened 
with ribs. Bench is aluminum. 

–  Selected 5 mounting feet which achieves a frequency of >1000Hz 

Mode 1 Mode 6 Mode 7 
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Simple mid-plane with benches 
reduces complexity of box 

•  Resonator pump-head and heavy rotators mounted 
directly to mid-plane.  Most other optics on benches. 

•  Resonator pump-head has an adapter plate to keep the 
mid-plane flat and simple for maximum flexibility. 

•  Minimizes the tapped holes and bosses on the mid plane 
reducing risk and cost of the box. 

ESTF 2014 
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Exterior LOM Views 

Output 
Window Flexures 

modified from 
ICEsat-2 

Coldplate 

Power and signal 
connectors 

Overall Dim:  18.0” x 12.0” x 8.5” 
        Weight:  88 lbs 
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Laser Electronics Module 
(LEM) Design 

•  Rack mounted, not intended 
to demonstrate TRL 6 
–  Combination of COTS and 

custom electronics modules 

•  COTS Modules 
–  Diode drivers 
–  Oven controllers 
–  Seed laser controller 

•  Custom electronics 
–  Q-switch driver 
–  EO modulator 
–  Control electronics 
–  Locking electronics 
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Assembly Status of Laser Optics 
Module (LOM) 

• Match	  drilling	  of	  the	  flexure	  mounts	  to	  the	  laser	  is	  complete	  	  
• Laser	  housing	  is	  cleaned,	  helicoils	  are	  installed,	  and	  harnessing	  is	  
underway	  

• All	  opGcal	  subassemblies,	  including	  the	  diode-‐pumped	  heads,	  are	  
built	  

•  InstallaGon	  and	  thermal	  balancing	  of	  the	  heads	  will	  begin	  shortly	  
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Assembly Status of Laser 
Electronics 

• COTS	  electronics	  are	  
assembled	  into	  rack	  
–  Four	  diode	  drivers	  
–  Two	  oven	  controllers	  
–  Seed	  laser	  TEC	  controller	  
–  Seed	  laser	  power	  supply	  

•  All	  custom	  boards	  are	  
assembled	  and	  tested	  

•  Assembly	  of	  boards	  into	  
the	  custom	  control	  box	  
has	  begun	  
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Program Status 
•  Solutions have been found for all critical design challenges 

–  High power amplifier design shows excellent performance in detailed 
modeling. 

–  Symmetric mid-plane structure provides environmentally stable optical 
bench while allowing simple conductive thermal interface 

–  Opto-mechanical solution exceeds requirements for stability under 
vacuum, vibration, and thermal load 

–  Low out-gassing structure for thermal control of harmonic crystals 
–  Near polymer free environment for all UV components. 

•  Other aspects of the design are low risk legacy components 
•  Anticipated completion date is early Q1 2015 
•  Discussions on order of testing is ongoing 

–  150 Hz, 532 nm performance testing will likely be added to the program 
–  Conversion to 50 Hz UV for TRL 6 testing will follow 

•  TVAC 
•  Lifetime 
•  Vibration  


