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Objectives

We developed a new ultra low noise dual-polarized and
sideband separating radiometer front-end at submillimeter
wavelengths using high electron mobility transistor (HEMT)
amplifiers.

The low-noise amplifier front-ends will be used in place of the
SIS mixers currently proposed for the SMLS instrument on the
GACM mission.

The dual-channel SMLS will cover the 180-270 GHz and
620-660 GHz frequency bands. We’ll design highly integrated
amplifier based receivers with noise temperatures close to
those of the existing SIS mixers, but at an operating
temperature of 20 K rather than 4 K.

This represents a major simplification in design; and mass,
power, as well as risk reductions for SMLS.



@ Applications: Earth Sciences

Terahertz Radiometers are used for Atmospheric
Chemistry, Air Pollution, and Global Monitoring
¢ Stratospheric and Tropospheric Chemistry

- ozone layer modeling
- economics vs. environment
- water distribution/pollutants

¢ Clouds: Global Warming
- ice crystal: size & distribution

e Aerosols, Volcanism, Dust

GIMS (?

Remote sensing with fine height
resolution (= 1 km) via Limb Scanning
ry heterodyne measurements yield
i temp., pressure, and ppm abundances




@’ Applications: Earth Sciences

* Terahertz radiometer instruments provides the 3-D
mapping and high temporal resolution capability.

* Broadband low noise receivers in space enables an
unprecedented combination of sensitivity,
resolution, and coverage to study Earth's
atmosphere.

* What needed is a compact, low-mass, and low-
power Earth observing instruments.

* They allow very short integration times for rapid
detection of weak chemical species important to
stratospheric composition studies.

* Broadband coverage enables simultaneous
measurements of multiple chemicals in the , )
troposphere and stratosphere. <100 200 250

Cloud ice and CO measurements at
submillimeter wavelengths.




Applications: Astronomy

Astrophysics: High resolution heterodyne spectrometers

 Star formation and key phases of galaxy evolution occur in regions
enshrouded by dust that obscures them at infrared and optical
wavelengths.

* The temperature range of the interstellar medium of ten to a few
thousand Kelvin in these regions excites a wealth of submillimeter-
wave spectral lines.

* With high-resolution spectroscopy, resolved line profiles reveal the
dynamics of star formation, directly revealing details of turbulence,
outflows, and core collapse.

What astronomy at 400-700 GHz?

* 3P,—3P, fine-structure transition of neutral carbon, [Cl], at 492 GHz from a
photon dominated region or a nearby galaxy.

* 12CO J=5-4, 576 GHz rotational transition line.
* 12CO and 13CO J=6-5, 691 GHz line from nearby galaxy.



Why Amplifiers

Traditional submillimeter-wave heterodyne receivers for high
resolution spectrometers use:

e Superconductor Insulator Superconductor (SIS) mixers
* Hot Electron Bolometer (HEB) mixers
» Schottky diode mixer

There were no amplifiers at the submillimeter-wave band

Amplifiers at submillimeter wavelengths:

* LNA with sufficient gain at the front-end, reduces noise contribution
from mixers and IF amplifiers.

* Power amplifiers at these frequencies improves LO efficiency.

* High-level of integration of receiver front-ends — on a single chip or
block.

* Leads to multi-pixel receiver designs.



@ Comparison of HEMT with SIS

RFE Technology HEMT Amp SIS Mixer

Receiver Frequency 240 GHz 640 GHz 240 GHz 640 GHz
DSB Receiver Temperature 150 K (exp) 500 K (exp) 75K 300 K
DSB System Temperature 280 K 650 K 205K 450 K
Operating Temperature 20K 4K
Cooler TRL 9 9

Note: Although 4K cryo-cooler was flown by the Japanese
team to the international space station, it failed after a
couple of months of operation.



Cryogenic Amplifiers

Amplifiers still cannot compete with SIS or HEB in noise performance!

Still, there are several advantages of using cooled amplifiers over
SIS or HEB mixers:

* SIS and HEB mixers need 4K operations.
 Amplifiers perform well when cooled to 20K.

* For space-based instruments, that is a big advantage — a
significant reduction of risk and lower power requirement.

* If the temperature cannot reach 4K, SIS and HEB mixers will not
work. Amplifiers will have graceful degradation of performance
when temperature warms up.

 Multi-pixel operations with cryogenically cooled integrated
amplifiers simplifies overall system design.



@ Cryogenic Amplifiers

At lower frequencies, HEMT amplifiers cooled to 20K provide a
significant improvement in noise over room temperature.

Noise Temperatures for 280LN1A and 280LN2A in WR-5 Packages
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@’ Amplifier Based Earth Science Instrument

Schematic Block Diagram of Amplifier Based Receiver Front-End
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HEMT amplifier based receivers cooled to 20K down-convert the
signals from the antenna for detection in the digital spectrometers.
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Amplifier Based Earth Science Instrument
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MHEMT-Based Sideband Separating Receiver
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 The radio frequency (RF) signal is first amplified by a low-noise
amplifier (can be cooled to 20K to improve signal to noise).

* RF hybrid circuit along with mixers separate the two sidebands.

e These are split in the back-end IF processing and spectrometer
subsystems.
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@Dual Polarization and Ortho-Mode Transducer

* Ortho-mode transducers separate input signals to two linear
polarizations.
* Biofot OMT for wideband performance. .
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"WDual Polarization and Ortho-Mode Transducer
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]

Waveguide Quadrature Hybrid

dB

e 6-branch waveguide quadrature hybrid
e Performance from 620 — 660 GHz:

— Measured balance +1 dB

— Measured phase 90t5°

— Measured return loss < -25 dB

— Measured isolation < -25 dB
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@’ Waveguide 3-dB 620-660 GHz Power Divider
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Terahertz InP HEMT
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Terahertz InP HEMT Circuits

High Electron Mobility Transistor (HEMT) based Amplifier
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@ Cryogenic Measurement Set-Up

Cryogenic measurement set-up performs semi-automated measurements.

Multipliers

Chopper Amplifier
IF Mixer ynder Test

.

Cold load i
Noise temperature

measurement set-up
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Bias Circuits

Power Meter



@’ Transistor Based Amplifiers and Circuits

240 and 640 GHz Low Noise Amplifier Chips Diced
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@ Transistor Based Frequency Multipliers

Waveguide housing 8um center conductor to
which external probe is
wire-bonded.
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@ Amplifier Measurements

Amplifiers are measured individually at room and cryogenic

temperatu res.
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@/ Amplifier Measurements

640 GHz Amplifiers: Cryogenic Noise Temperature Measurements
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Amplifier Measurements

180-270 GHz Amplifiers: Cryogenic Noise Temperature Measurements

Measurement is at 27K
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e

240 GHz HEMT Balanced Mixer
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 We found a way to bias these devices in such a way so that the

sensitivity improves.
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@ System Integration

Two local oscillator chains for two polarizations.

Horn

180-270 GHz HEMT-based dual-polarized sideband separating receiver
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Amplifier Stability
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Summary

* Cryogenic amplifiers at 240 and 640 GHz are showing almost
a factor of eight improvements in noise temperature when
cooled to 20K, similar to amplifiers at millimeter
wavelengths.

* It is now feasible to design and develop HEMT based

receivers which will offer performance close to SIS mixers,
but at 20K.

* Integrated amplifier based sideband separating and balanced
240 GHz (integrated dual polarized) and 640 GHz receivers
cooled to cryogenic temperatures will be available in January
2015.
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