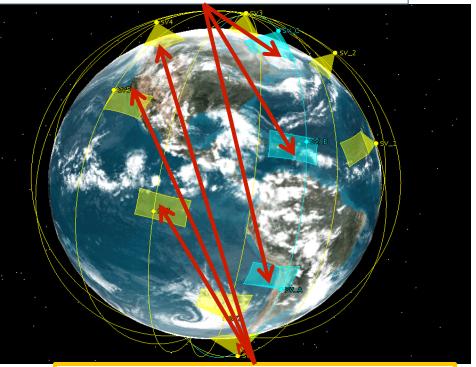

MISTiC[™] Winds

An Affordable System of Systems Approach for the Observation of Atmospheric Dynamics

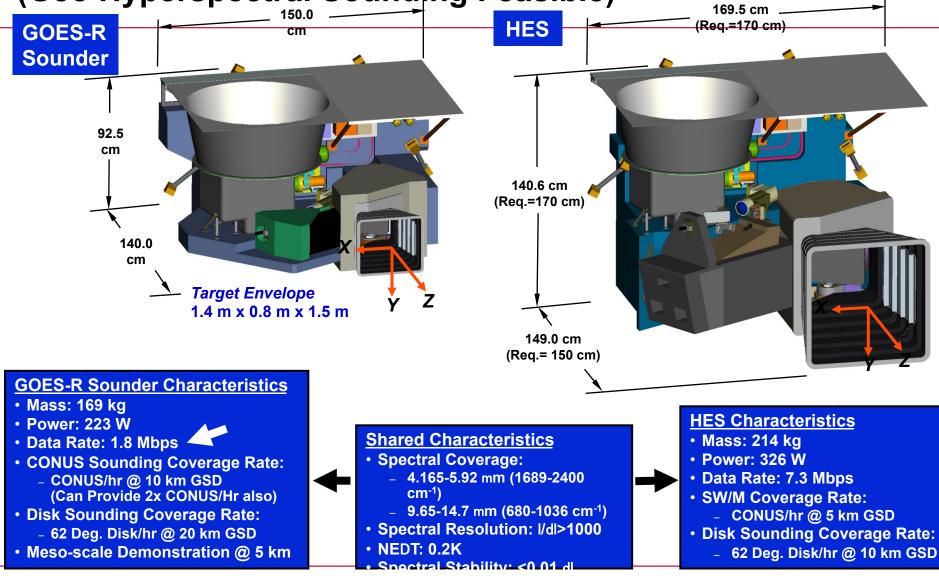
NASA ESTO 2013 IIP PI: Kevin R. Maschhoff, BAE Systems Science Team: H. H. Aumann JPL, J. Susskind NASA GSFC

MISTiC[™] Winds

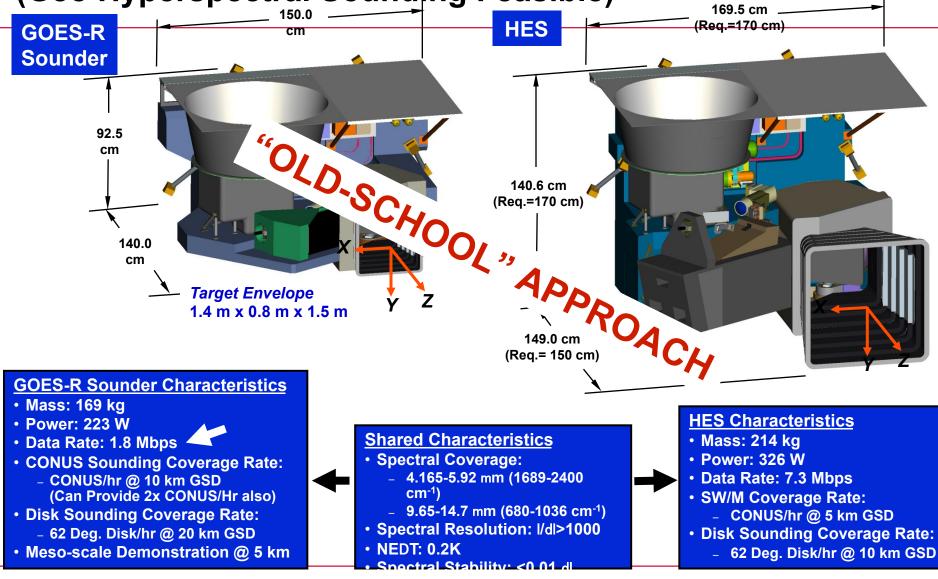

- Provides High Spatial/Temporal Resolution Temperature and Humidity Soundings of the Troposphere
 - Atmospheric State and Motion
- Enabled by:
 - LEO Constellation Approach
 - Micro-Sat-Compatible Instrument
 - Low-Cost Micro-Sat Launch

MISTiC[™] Winds-An Affordable System of Systems Approach for the Observation of Atmospheric Dynamics

- MISTiC[™] Winds Temperature and Humidity Sounding Constellation Options.
 - 1. Frequent-Sounding Constellation
 - e.g. 90 min refresh-globally.
 - 2. Wind-Vector Formations
 - e.g. 4 3-Satellite Formations for Cloud-Drift and Water Vapor Motion-Vector Winds
 - 3-Hr Refresh for 3D Winds and Atmospheric Soundings


Miniature Spectrometers Operated in Constellations Offer Lower Cost /Lower Risk Approach than GEO for Frequent-Refresh IR Soundings & 3-D Winds POC:kevin.maschhoff@baesystems.com

A Motion-Vector Winds Formation

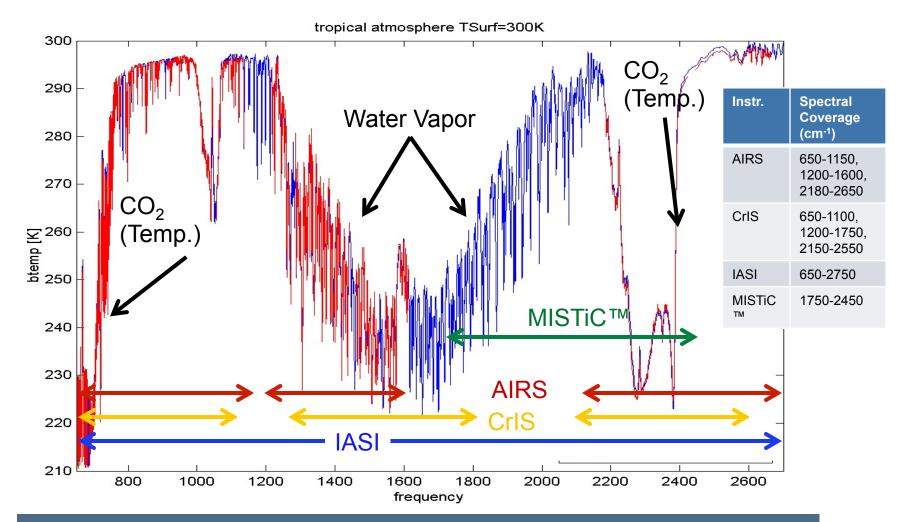


90 min Refresh of IR Soundings Provided by Spectrometers in 8 Orbital Planes (gold)

GOES-R Sounder (HES) after Formulation Phase (Geo Hyperspectral Sounding Feasible)

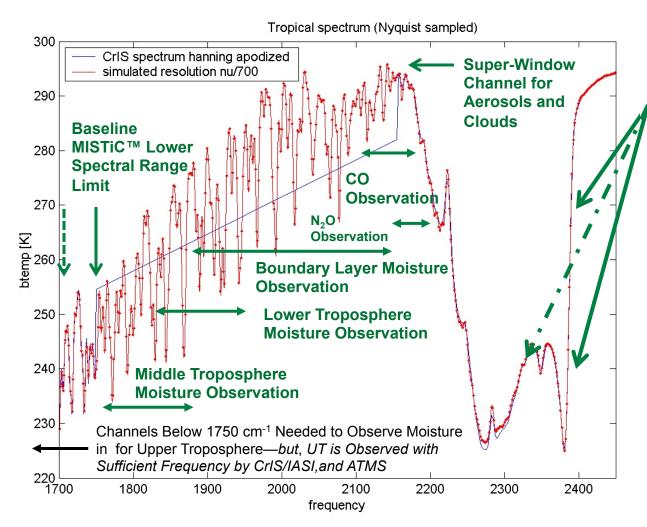
GOES-R Sounder (HES) after Formulation Phase (Geo Hyperspectral Sounding Feasible)

GOES-R Advanced Baseline Imager, AIRS, and CrIS


- Size of Geo-Stationary Imagers/ Sounders Driven by Orbit Radius
- Size of IR Sounders
 Driven by # of Channels and LWIR Band Cooling

MISTiC[™] Instrument Would be Much Smaller than AIRS

- Artist's Rendering Depicts a MISTiC[™] Instrument, for Comparison to AIRS
- Instrument Concept Design in-Progress
 - Baseline envelope consistent with hosting on a 50 kg ESPA-Class Microsatellite
 - "Objective" Envelope consistent with 27U Cubesat Envelope
- Small instrument size depicted continues to appear feasible

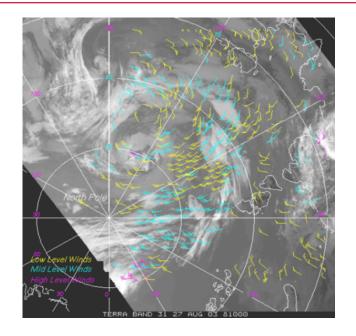


Spectral Coverage for MISTiC[™], AIRS, CrIS, and IASI

Critical Spectral Channels to Monitor Troposphere Selected for MISTiC™

For MISTiC^M, we Select ~ 600 Spectral Channels in the Mid IR-Sufficient to Sound the Dynamic Portion of the Atmosphere

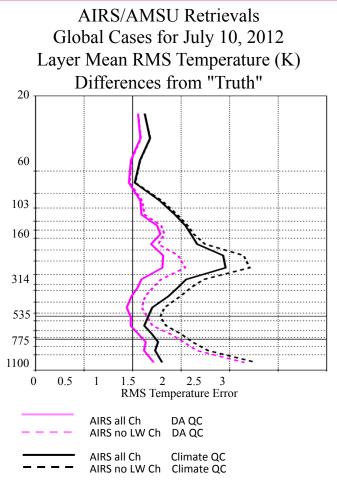
- SWIR Coverage at NEDT and Dn Sufficient for CO₂ R-Branch Temperature Sounding of Surface to Upper Troposphere
 - Sharper vertical resolution using Wings
 - Spectral Resolution > 700:1 is Sufficient
- Mid-Trop. CO
- Mid-Trop. N₂O
- Moisture in Planetary Boundary Layer
- Moisture Profile in Lower and Middle Troposphere
 - WV Motion Vector Winds
- Clouds
 - Cloud MV Winds


MISTiC[™] Winds Level 1 Instrument Performance Characteristics and Level-2 Sounding Data Quality (updated)

MISTiC™ Key Instrument Performance					
Characteristics					
Characteristic	Value	Comments			
Minimum Spectral Frequency	1750 cm ⁻¹	5.72 mm			
Maximum Spectral Frequency	2450 cm ⁻¹	4.082 mm			
Spectral Sampling	~ 2:1	<590 spectral samples			
Spectral Resolution @ minimum	>700 :1	n/dn ((comparable to CrIS- Apodized)			
Spectral Calibration Knowledge	1/100,000	dl/l			
Angular Sampling	1.6 mr (cross- dispersed)	1.38 km (@ Nadir)			
Orbital Altitude and Orbit	705.3 km	Polar/Sun-Synchronous			
Angular Range (cross-track)	1570 radians	90 Degrees—Same as AIRS			
Spatial Resolution	<3.0 km (geometric mean)	@ Nadir			
Radiometric Sensitivity	<200 mK (max)	<(<150 mK @ 2380 cm- ¹)			
Radiometric Accuracy	<1%	@ 300K Scene Background			
Key Sounding Data Product Characteristics,					
Vertical Resolution— Temperature	~ 1 km	In Lower Troposphere			
Layer Accuracy	~ 1.25 K	In Lower Troposphere			
Vertical Resolution—Humidity	~ 2 km	In Lower Troposphere			
Layer Accuracy—Humidity	~ 15 %	In Lower Troposphere			

- MISTiC[™] Data Quality Requirements Similar to those Demonstra-ted by NASA's Successful AIRS Instrument
 - Spectral Resolution
 - Spectral Calibration
 Stability
 - Radiometric Sensitivity/Accuracy
- Spatial Resolution Notably Finer than AIRS Resolution (13 km @Nadir for AIRS)
 - 3.0km @ Nadir
- Reduced Spectral Range Enables Major SWAP Reduction

MISTiC Winds Observes the 3D Vector Wind Profile


- MISTiC Winds Observes 3D Atmosphere at 3 closely spaced times to Produce Multi-Altitude Motion-Vector Winds
 - Projected Wind Speed Error ~ 2 m/s rms
 - ~3x better than projected for GOES-R
 - SWIR/MWIR Imaging/Sounding Provides Much Better Tracer Height Assignment than GOES
 - 1K/1 km Temperature Sounding Enables Separation of Temperature and Moisture Concentration Contributions to Radiance
 - Both Moisture and Cloud Motion Vector Winds Observed by MISTiC
- OSSE's Show that 3D-Winds Observations Would Have the Largest Impact on Short Term Weather Forecast of Any New Observation
 - MISTiC Observes Thermodynamic State and Mass-Field Motion

MISTIC Winds' Tracers Features Would Have Better Vertical Resolution Than MODIS Winds (shown) and GOES Imagers

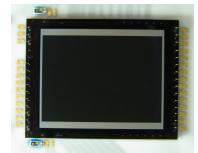
Vertical Temperature Profile Retrieval with SWIR/MWIR Sounder Comparable to AIRS & CrIS in Lower Troposphere

- Vertical Temperature Profile Retrieval Accuracy for Two Different Quality Control Thresholds are Shown
 - Using All AIRS Channels—red curves
 - Using SWIR/MWIR-Only –black curves
- Modest Additional Error Experienced when using only SWIR/MWIR Channels
 - ≤ 0.1K Added Error in Lower Troposphere
 - NOTE-AIRS Version 6 Algorithm Primarily uses SWIR-MWIR Channels for Sounding, using LWIR Channels only for Cloud-Clearing
- Additional Benefit from MISTiC[™] Express-<u>fine spatial resolution</u> (~ 3 km @ nadir)
 - Yield of Cloud-Clear Observations much higher for MISTiC[™] than for CrIS, IASI, and AIRS
 - Increased Cloud Contrast in Partly Cloudy Scenes

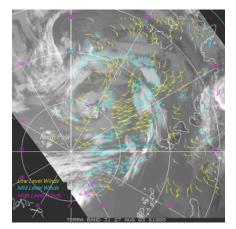
(from Joel Susskind NASA GSFC)

Comparative System of Systems Estimates for Instruments for Tropospheric Wind Profile Measurement

Instrument	Power	Size (cm)	Mass (kg)	# of Levels*	** State Measured	Orbit and # Platforms
MISTIC™	<60 W***	20x34x35***	15	~10	YES	LEO (12)
HES	550 W	170x170x 150	315	~10	YES	GEO (6)
Hybrid Wind LIDAR (est)	750 W	150x150x 100	400	10-15	NO	LEO (4)

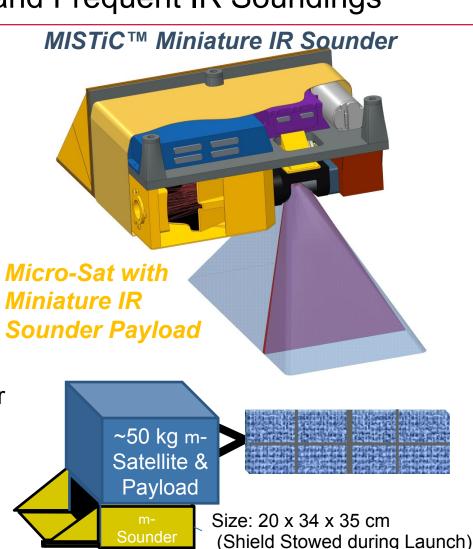

* Number of wind levels in the troposphere

** Atmospheric State Measurement (Vertical & Spatial Temperature and Moisture Fields etc)
 ***Updated (based on small satellite provider discussions


Miniature Spectrometers Operated in Constellations Offer Lower Cost /Lower Risk Approach than GEO for Frequent-Refresh IR Soundings & Winds

Risk Areas and Risk Reduction Under NASA IIP

- Use of new APD-Class MWIR FPA Allows its Operation at Much Higher Temperature → Low Cooler Power
 - Benefit: Reduced SWAP
 - Risk: APD Array Not Yet Tested in Space Radiation Environment
 - Mitigation: Radiation Testing
- Application to Highly Vertically Resolved (3D) MV Winds is highly Plausible-but Not Demonstrated
 - Benefit: MV Winds at Low Cost
 - Risk: Unknown (detailed) Tracer Decorrelation Behavior
 - Airborne observations of Tracer De-Correlation Times & Behavior


The MWIR HgCdTe Avalanche Photodiodebased IR Focal Plane Array Detector selected for MISTiC[™] allows high-sensitivity hyperspectral measurements at 100K

MISTiC[™] Winds Tracers Features Would Have Better Vertical Resolution Than MODIS Winds (shown)

MISTiC[™] Winds-A Miniature High Vertical Resolution Infrared Sounder for 3D Winds and Frequent IR Soundings

- Miniature Spectrometers Enabled by:
 - Optimized Low-Impact Spectral Channel Selection Proven through a Decade of NASA's AIRS Experience
 - Innovative Opto-Mechanical/Thermal Design Minimizes S/C Resources Needed to Cool IR Spectrometer
 - Advanced Large-Format IRFPA, Miniature Cryocooler, and Electronics
- Compact IR Sounder Design, Mature Algorithms and Technologies Enable:
 - Payload Hosting on a Micro-Satellite for a Low-Cost Total IR Sounding Mission
 - ~1 km Vertical & ~3 km Horizontal Resolution (@Nadir) in the Troposphere

Supplemental Material

- MISTiC[™] Mission Concepts
- Application of MISTiC[™] Approach to the JPSS Gap Mitigation Mission
- Data Down-Link Options
- Constellation Launch Options
- Distributed Architecture Benefits for an Observing System

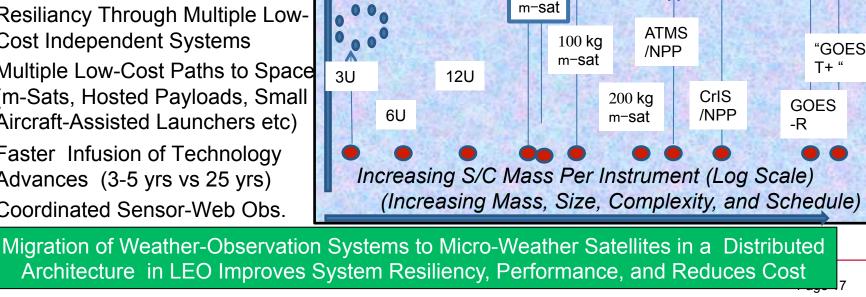
MISTiC[™] Winds is Well-Positioned to Leverage Key Trends in Microsatellites --in the Age of "Agile" Space

Industry Trend	Public Examples	Benefit to MISTiC™ Winds
Launch Becomes an Affordable Service	 SpaceX Lands its Falcon-9 Booster—Reusable S/C F15-Launched Booster Rail-Gun Launched Rocket Booster (Super STRYPI) 	 Multiple Routes to LEO Space for ~ \$1M-\$3M per 50 kg Spacecraft Launch Opportunities
MicroSats Becomes a High-Tech Semi- Custom Commodities	 3-d Printed 27U Spacecraft Demo. (Millennium Space) Multiple MicroSat Vendors Offer 50 kg bus 	 27-U CubeSat (\$1M-\$3M) Competitive Pressure to Maintain Low Costs and Availability-for MISTiC[™] Host
S/C Component Evolution -Follow Moore's Law-Like Improvement Path	• Active Market Place for Standard S/C subsystems (Reaction Wheels, Solar Panels, Batteries, Coms, etc)	 Majority of S/C Resources Available for Payload Low-cost Arc-Sec class ACS
Communications and Ground Stations Become Affordable Standard Services	Standard Ground Stations with X-Band (Space Flt Networks) • \$50k/mo (dedicated) or • \$20/minute (shared)	 Affordable Polar and Selected Mid-Latitude x-Band Coms and Ground Stations for MISTiC[™]

BAE SYSTEMS Miniaturization of IR and m-Wave Sounders Allows Migration Toward a Distributed LEO Architecture

MISTIC

Winds


DARPA

'SeeMe'

MicroMAS

Neather Information

- NASA and DoD are Moving to **Distributed Architectures for** Weather Observations
 - **COSMIC 1 & 2** •
 - MicroMAS/MiRaTA ٠
 - **CYGNSS**
 - (Defense Weather Follow-on)
- Distributed Architectures **Offer NOAA Key Advantages**
 - Resiliancy Through Multiple Low-**Cost Independent Systems**
 - Multiple Low-Cost Paths to Space • (m-Sats, Hosted Payloads, Small Aircraft-Assisted Launchers etc)
 - Faster Infusion of Technology ٠ Advances (3-5 yrs vs 25 yrs)
 - Coordinated Sensor-Web Obs. ٠

27U

50 kg

MISTIC™

Express

HES

ABI

CrIS

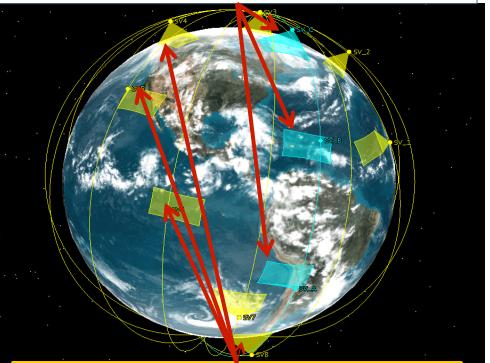
ATMS

MISTiC[™] Science Data Down-Link Requirements-- and Implementation Options

Key Derived Requirements :

Key Attribute	Requirement	Comments
Reference Orbit Type	Polar Sun/Sync	Altitude 704-833 km
Instrument Data Rate	<5 Mbits/sec	After lossless data compression (on-board)
Maximum Data Latency	30 min.	Frequent-Sounding Const.
	60 min.	3D-Winds Constellation Type

Approach Options:


Approach Option	Capability	Comments
X-Band Link at Poles	< 60 min. Latency	>80 Mbits/Sec Links
Mid-Latitude Ground Stations (Commercial)	~30 min. Latency	Land-based Gnd Stations (Commercial Service Coming).
Up-Link to TDRSS	<30 min	>300 Mbits/Sec in Ku and Ka
(Future) Laser-Comm.	<10 min	LEO Sat-Sat Link+ Gnd Link

Options for Deploying a MISTiC[™] Winds Constellation

- Key Challenge—Insertion of MISTiC[™] S/C into Multiple Orbital Planes ("the Large Dv Problem")
 - The entire constellation might be launched at once-but in one plane
 - Small Dv allows spread inplane
- Multi-Plane Distribution Examples:
 - Exploit Orbital Precession
 - ~6 months for 22.5 deg. change
 - Multiple (2-4) ride-share launches
 - Dedicated Small Launch Vehicles
 - e.g. DARPA ALASA,

Multiple Options for Deploying Elements, or the Entire Constellation Exist, with More Options Emerging in Next Few Years

A Motion-Vector Winds Formation: Groups of 2-3 satellites view scene 2-3 times

Sounding Constellation (90 min Refresh of IR Soundings Provided by Spectrometers in 8 Orbital Planes (gold)

Options for Operational MISTiC[™] Winds Operational Concept-- Presented to NASA in IIP

Mission Objective	Data Product Objective	Constellation Approach	Number of m-Sats
Tropospheric Winds Observation (Prototype Operational Vertically Resolved Winds and Atmospheric State Observation	Fine Vertical Resolution 3-d Winds Products (Cloud and Moisture Motion Vector Winds) with Sounding Products	Observations by each of 2-3 instruments spaced by ~ 5 min. (same orbital plane	9-12
Rapid Refresh Temperature/Humidity Profile Observation (Prototype Operational Weather Observation)	Separately Acquired Infrared Spectral Radiances, for Assimilation into Regional Weather Models	Independent observations by platforms in sun- synchronous orbits with nodal crossing times spaced by 90 minutes	8
Secondary Transport Observation (e.g. supporting a GACM or PACE Primary NASA Mission)	Multi-level wind vector data co-incidentally collected with primary mission/trace chemical total column observations	Observations by each of 3 instruments spaced by ~ 5 min (same orbital plane as primary payload)	3

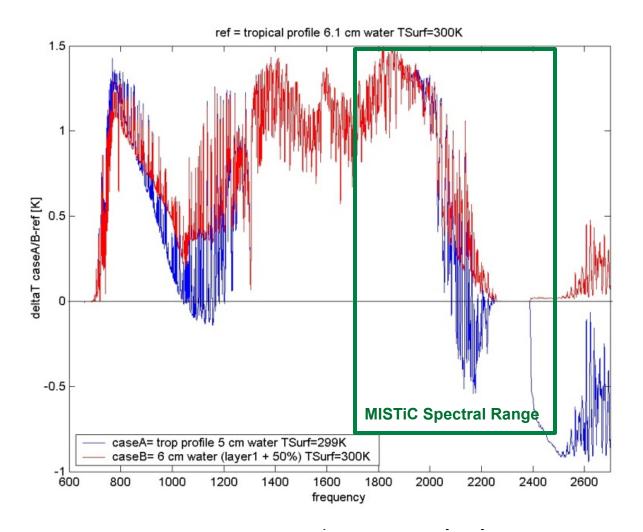
Comparative Estimates for Instruments for LEO **BAE SYSTEMS** Infrared Temperature and Humidity Sounding Measurements (JPSS Gap Mitigation-Another Application of MISTiCTM)

Instrument	Power	Size (cm) (Earth-Shield Stowed)	Mass (kg)
MISTIC™	60 W	20x34x35*	15
CrIS	124 W	71x88x94	165
MISTiC™ with Space- Qualified FPA Technology	75 W	17x34x50*	30

* Engineering Estimates for Size—Detailed Instrument Lay-out being Developed During 1st Phase of NASA IIP

 MISTiC[™] Instruments (and Small S/C) are Single-String to keep SWAP-C Low

but....

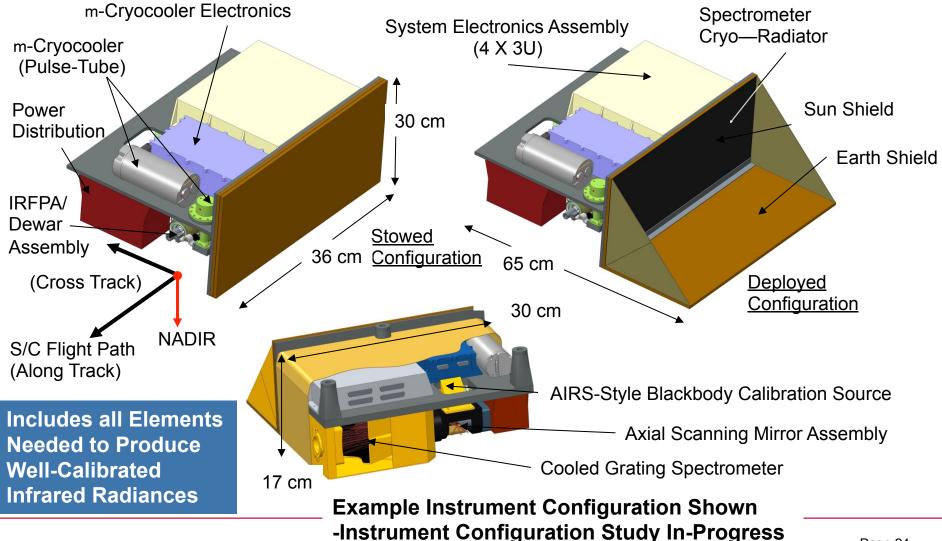

 Two MISTiC[™]'s Could Be Launched at Once into 1:30 PM Orbital Plane- for Redundancy

A Distributed – Architecture Approach to System Resiliency

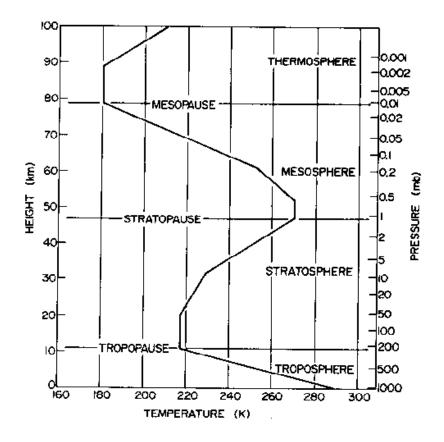
A Miniature Sounding Spectrometer Incorporating Current Technology Would Operate with Lower FPA Temperature (more cooler power) but with an FPA at TRL-6 would Support a Schedule that Provides JPSS-1 Launch-Failure Risk

Observing Water Vapor in the Boundary Layer within the MISTiC Spectral Range

- Model Brightness Temperature Change Due to Increase in BL Moisture
 - Red 5 cm
 - Blue 6 cm


BAE SYSTEMS

MISTiC Instrument Hosted by an ESPA-Class Micro-Satellite--Example



MISTiC Instrument Concept Shown Hosted by ATK 150 Series Micro-satellite

MISTiC[™] Integrates Miniature Versions of Standard IR Sounder Functional Elements into a Proven Architecture

US Standard Atmosphere

- US Standard Atmosphere
- Temperature Profile