OAWL through HAWC-OAWL (w/ FIDDL and HOAWL)

Sara Tucker Tom Delker, Carl Weimer, Bill Good Ball Aerospace & Technologies Corp.

Ball Aerospace & Technologies Corp. Agility to Innovate, Strength to Deliver

OAWL: Optical Autocovariance Wind Lidar Flexibility for wind observations

OAWL is a Doppler lidar designed to measure wind from aerosol backscatter at 355 nm *and/or* 532 nm

One laser for global winds & aerosols.

From the Fifth WMO Impact Workshop, May 2012 (Riishojgaard): Highest ranking contributors to weather forecast skill are mostly winds measurements – Investment in additional winds observations is a high priority.

The Global Observing System for Weather

Heavily skewed toward mass observations

300mb Wind Speed (2010) GFS / ECMWF Langland, Sedona 2012

Root-Mean Square of Analysis Differences: 300mb Wind Speed

Optical Autocovariance

 ~1m OPD Mach-Zehnder Interferometer (MZI) w/ field-widening - enables use of larger telescopes (e.g. > 8 mrad FOV)

Patent #s: US7929215B1, US8077294B1

- Four channels sample interferometer fringe phase (wind) and amplitude (aerosol).
 - Outgoing "T0" pulse
 - Atmospheric Return
- Fringes wrap no "out of band" concerns, no laser pulse-to-pulse stability req.
- The phase difference $\Delta \phi$ is related to the line-of-sight wind speed, V_{LOS} by

$$V_{LOS} = \frac{\Delta \phi \lambda c}{2\pi (2OPD)}$$

OAWL Development Timeline

OAWL IIP-07 Development Roadmap

System Description: OAWL

Parameter	OAWL –IIP	HOAWL/HAWC-OAWL
Wavelength	355 nm	355 nm & 532 nm
Laser power (pulse energy, PRF)	~4W (~20 mJ/ 200 Hz)	~4W/⊠available (532 attenuated for eye- safety)
Effective Telescope Diameter (with Obscuration)	~25 cm	~same/TBD
Interferometer OPD	~0.9 m	Same interferometer
Views	Ground: horizontal Airborne: 45° off nadir, starboard	Ground: horizontal Airborne: two looks, 45° off nadir, 90° azimuth separation

OAWL July 2011 Ground Validation with NOAA's Active Remote Sensing Group

2011 Autonomous OAWL Flight Tests: NASA WB-57

Breadboard OAWL Airborne Demonstration:

- autonomous operation
- measured Doppler shifts from ground, clouds and aerosols (winds).

OAWL Sound Bites: parts of the big picture

ESTO-funded Advanced Component Technology (ACT) Tasks

FIDDL: Fabry-Perot for the Integrated Direct Detection Lidar

- □ Operating at 355 nm → build a molecular component to pair with the 355 nm OAWL aerosol winds system
 - Aerosol & molecular channels use same UV laser, same telescope
 - Aerosol + molecular returns together cover more of the atmosphere can use overlapping data to refine winds

HOAWL: High Spectral Resolution Lidar using OAWL

- □ Operating at both 355 and 532 → the aerosol OAWL system provides information about atmospheric aerosol ratios: HSRL
 - Single laser can provide both wavelengths
 - Double the aerosol winds, and add HSRL measurements.
 - Result: Aerosol transport \rightarrow chemical weather

OAWL Development Timeline

IEEE-GRSS Space-Based Lidar, Paris, France 8-12 September 2014

Atmospheric lidar return

- OAWL Mach-Zehnder interferometer fringe contrast depends on the illumination.
- □ Aerosol backscattered laser return has a narrow bandwidth → good fringe contrast in the interferometer
- □ Doppler broadened Molecular return has a wide bandwidth → adds offset, no fringe

Aerosol vs. molecular wind lidars

Higher precision measurement (narrow bandwidth).

- More opportunity for backscatter
- Lower precision measurement (wide bandwidth from the Dopplerbroadened molecular backscatter)

FIDDL

- A Double-Edge, Fabry-Perot, Doppler lidar receiver that "passes" the aerosol portion of the lidar return spectrum to OAWL.
 - FIDDL uses 355 nm molecular returns
 - OAWL uses the 355 nm *aerosol* returns (reflected from FIDDL)

Example: Molecular Return and 2 edge transmissions

- Provide precise etalon gap control for the double-edge approach
 - <0.025% FSR at 355 nm (@ 100's Hz rate)</p>
 - Translates into <0.5 m/s error *before* any pulse accumulation.
- Demonstrate alternative approach to achieving two edge filters
 - Angle tuning and polarization \rightarrow 2 edges out of a single aperture/etalon
 - Allows for smaller optic, or larger field of view on a single larger optic.
 - 1" etalon aperture, etalon finesse ~=9

FIDDL Implementation with OAWL

FIDDL ACT Summary

Electrical

- Boards & cabling designed, built, and tested
- Demonstrated low-noise capacitance measurement(<6aF at kHz rate)
- Integration with etalon in progress

Optical

- Etalon delivered (>4 mo. delay)
 - Returned for rework: shorted capacitive sensors due to poor gold plating.
 - Electrical checkout complete caps at 20-24 pF vs. ~15 planned)
- Optical system (up to etalon) aligned.

Mechanical:

 Etalon housing and Bench w/ Kinematic mount for attaching to the OAWL bench

Up Next: Final Integration, Testing, & Winds Demonstration

OAWL Development Timeline

IEEE-GRSS Space-Based Lidar, Paris, France 8-12 September 2014

Atmospheric lidar return - again

- Narrow-bandwidth aerosol
 return has a narrow
 bandwidth → fringe
- Doppler broadened molecular return has a wide bandwidth → adds offset, no fringe
- Products:
 - Phase of fringe \rightarrow wind speed
 - Amplitude of fringe →aerosol portion
 - Offset of fringe → molecular portion (no wind information)

OAWL fringe fitting: 2+2 = winds + HSRL

- Sampling with four (4) detectors provides the same amount of information as
 - "2" detectors for Doppler shift (e.g. double edge)
 - "2" detectors for aerosol ratio (e.g. aerosol & molecular channels)
- By fitting a fringe sinusoid to four (4) points OAWL constrains the fringe measurement
 - fringe amplitude → aerosol content
 - No biases due to aerosol/molecular ratio variability
 - better HSRL = better winds measurement.
 AND
 - fringe phase → Doppler shift
 - Platform motion does not affect HSRL measurement
 - Enables off-nadir HSRL measurements (better for ocean studies)

HOAWL Achievements

- Opto-Mechanical Rework: Designed/Built/Installed/Aligned
 - Dual wavelength collimator, dual wavelength ½ and ¼ waveplates, and time-zero path
 - New kinematic beamsplitter/beamcombiner mount
 - Installed IRAD-developed depolarization module
- Electrical Rework:
 - 532 nm and 355 nm calibrated and tuned
 - Added 2nd data acquisition card
 - 24 channels vs 10 on OAWL IIP-07
 - Identified and attenuated multiple electronic noise sources

- Modeling/Algorithms
 - Developed and tested HSRL retrieval algorithms
 - Developed full system model and error budget
 - Fed improvement requirements to HAWC-OAWL
- D Testing
 - System calibration
 - Initial HSRL measurements TRL 3
 - Preliminary validation efforts

355 & 532 nm Winds: HOAWL ACT

- Strong (~0.3 km⁻¹) extinction day
- Horizontal views out to > 11km (analog)
- 75m, 6s accumulation

6000

Range (m)

8000

10000

2000

4000

Precision (m/s)

0

0

ESTC

HSRL Estimates: Aerosol Backscatter

355 (top) and 532 (bottom) aerosol backscatter.

> "stripes" indicate additional calibration is required

OAWL Development Timeline

HAWC-OAWL IIP-13

- HSRL (High Spectral Resolution Lidar) for Aerosols, Winds, and Clouds (HAWC) using Optical Autocovariance Wind Lidar (OAWL)
- or ar (OAWL)
- **OAWL**: 355 nm & 532 nm airborne aerosol wind measurements
 - Two looks one per wavelength

□ **HAWC**: Add concurrent HSRL (aerosol) retrievals to OAWL winds

- Cloud/aerosol backscatter (M), extinction (M), and depolarization (M)...
- 355 and 532 nm wavelengths (color ratios)
- □ New Aerosol transport data products
 → Chemical Weather
 - Potential for Aerosol + Winds mission combinations

HAWC-OAWL preliminary airborne system layout

- □ Fit into the NASA WB-57 pressurized pallet w/ floor modifications
- □ Autonomous operation with pilot "eye-safety" control

NASA Earth Science Technology Forum, 27-30 October 2014, Leesburg, VA

pg 28

HAWC-OAWL

HSRL for Aerosols, Winds, and Clouds Using Optical Autocovariance Wind Lidar

AIRBORNE HAWC

Cloud Albedo

Cloud Droplet Nucleation

> Vertical Winds Mixing/Transport

Aerosol Backscatter, Extinction, & Depolarization

> Horizontai Transport

Surface Wind Shear

rth Science Technology Corum 2700 Ortober 2014, Leesburg, VA

Horizontal Wind Speed Profile Wind Shear

HSRL + Winds = Aerosol Transport Lidar

- □ HAWC-OAWL to measure Winds *and* Aerosol properties
 - Wind & Aerosol properties in one measurement
 - Partner with NCAR and Langley scientists to develop products
- Applications
 - Pollution transport & allocation
 - Weather AND pollution forecasts
 - Atmospheric rivers (Possible collaboration w/ NOAA G-IV for this)
 - Fire monitoring, control
 - Wind shear, turbulence, and wake vortex alerts near airports
 - Relationships between surface conditions and clouds
 - Turbulence & aerosol impact
 - Mixing vs. mixed layer heights
 - Pollution emission studies
 - Understanding of layering and transport

OAWL Development Timeline

ATHENA-OAWL

Atmospheric Transport, Hurricanes, and Extratropical Numerical weAther prediction using the Optical Autocovariance Wind Lidar

> PI: Dr. Lars Peter Riishojgaard University of Maryland

NASA Earth Science Technology Forum, 27-30 October 2014, Leesburg, VA

ATHENA-OAWL; path-finding science for next-generation global weather prediction and climate analysis

- ATHENA-OAWL: Design-to-cost approach based on heritage systems (e.g. CALIPSO lidar components, Fibertek Lasers, Star Trackers, etc.)
- Co-located wind and aerosol profiles
- Mission Objectives:
 - **b**reakthroughs in modeling and prediction of low and mid-latitude weather and climate.
 - better understanding of relationships between aerosol radiative forcing, atmospheric dynamics and the genesis and lifecycle of tropical cyclones
 - understanding of the impacts of long-range dust and aerosol transport on global energy and water cycles, air quality, and climate.
- □ NASA, NOAA, DoD, and International team members
- Proposed to NASA's 2013 Earth Venture Instrument (EV-I) Opportunity
 - GEDI won this round
 - ATHENA-OAWL airborne demonstrator a possibility: two 532 nm lasers, two looks

Summary

- **OAWL-IIP-07** demonstrated the Optical Autocovariance approach through
 - First full system development
 - Ground validation
 - Preliminary Autonomous Flight tests
- **FIDDL and HOAWL** advancing understanding of the OAWL system and its wind + HSRL capabilities at 355 nm and 532 nm wavelengths.
- HAWC-OAWL IIP-07 will demonstrate the two-look, two wavelength (355 & 532 nm) aerosol winds + aerosol properties system.
- **ATHENA-OAWL** A design-to-cost approach to a pathfinder winds mission using only the 532 nm wavelength

April 2014

OCEAN WIND CLIMATOLOGY

CHANGING EXTREMES IN U.S.

WINDCHILL ON MARS

Volume 95

Number 4

Bulletin of the American Meteorological Society

NASA Earth Science Technology Forum, 27-30 October 2014, Leesburg, VA