

Hyperspectral Outgoing Longwave Radiation Observatory Payload Concept Study

David M. Tratt¹, Iwona A. Palusinski¹, Eric Herman¹, Jeffrey A. Lang¹, Anna-Britt Mahler¹, Leslie A. Peterson¹, Francisco A. Roybal¹, Adam G. Vore¹, Friedemann T. Freund², and Andrew N. French³

¹ The Aerospace Corporation, Los Angeles, Calif.
² NASA Ames Research Center, Moffett Field, Calif. and San José State U., San José, Calif.
³ USDA Agricultural Research Service, Maricopa, Ariz.

NASA Earth Science Technology Forum Leesburg, Va., 28-30 October 2014

© 2014 The Aerospace Corporation

Purpose and Motivation

- A compact thermal-infrared (TIR) imaging spectrometer design was conceived for persistent high-accuracy surveillance of outgoing longwave radiation (OLR) from GEO.
- The proposed spectrometer concept would enable enhanced resolution of the Earth's OLR emission to serve multiple applications.
- Sensor design assumes limited SWAP accommodation resources commensurate with a SmallSat bus.
 - Compatible with manifesting aboard a GEO constellation as a hosted payload.
- This concept study is tasked with validating a strawman sensor design and its predicted performance in the GEO environment.

Crustal Strain and Earthquake Potential

- The proposed spectrometer concept would enable enhanced spectroradiometric resolution of land surface self-emission
 - ⇒ Characterization of non-thermal IR emissions related to stress build-up within the Earth's crust
- Definitive determination of spectral content would help to resolve competing theories of anomalous TIR generation observed prior to some earthquake events
 - ⇒ Opens up possibility of alternative earthquake early warning (EEW) approach

TIR Anomaly Case Study: L'Aquila, Italy, 2009

Strain-Induced Self-Emission Lab. Measurements

Black gabbro, excited with 40-kHz ultrasound to activate positive hole charge carriers, exhibits up to 10% excess TIR.

Measurements made with an Agilent ExoScan[™] 4100 FTIR spectrometer.

Terrestrial Hydrology Processes

- The proposed spectrometer concept would enable enhanced resolution of land surface spectral emissivity
 - \Rightarrow More accurate land surface temperature (LST) retrievals
 - \Rightarrow Improved estimates of local- to regional-scale evapotranspiration (ET)
 - ⇒ Higher fidelity water usage determination and drought susceptibility forecasting in agricultural regions and sensitive ecosystems
- Multiple time-of-day acquisitions made possible by GEO orbit enable the diurnal variation of LST to be tracked

Radiometric Canopy Temperature Closely Related to Plant Water Status

- ET depends upon LST/air temperature difference.
- Surface (colors) and air (black) temperatures of wheat were observed continuously to monitor ET in 15-minute time steps.
- To demonstrate LST/ET relationships, soil moisture contents were controlled by irrigation and measured continuously.
- Diurnal LST variation over wheat crop a strong function of soil moisture content.
- At night crop is nearly isothermal except for severely water-stressed plants.
- Differentiation of soil moisture contents varies throughout the day with greatest spread in afternoon.

Sensor Design Philosophy

- Choice of near-ambient temperature detector operating point puts sensor cooling requirements within the capability of passive thermal control schemes.
 - Eliminates need for high-SWAP cryocoolers, but at the cost of reduced heat-lift capacity.
 - GEO vantage point enables integration times sufficient to overcome resulting radiometric sensitivity reduction.
- Spectrometer based on a dispersive pushbroom hyperspectral design coupled to a 2-D microbolometer focal-plane array.
- 10-km ground-sample distance (GSD) at nadir permits acquisition of full disk at 1-hour cadence.
- Modular design will allow ready substitution of higher GSD fore optics to address other applications.

Microbolometer Sensor Requirements

Sensor requirements are set by science goals

$$\begin{split} \text{NE}\Delta T &= \frac{4\left(f\#\right)^{2}\sqrt{\Delta f}}{\pi\sqrt{A_{d}}\int\limits_{\lambda_{1}}^{\lambda_{2}}d\lambda \ D_{sys}^{*}\left(\lambda\right)\tau_{o}\left(\lambda\right)\tau_{ATM}\left(\lambda\right)\frac{\partial L}{\partial T_{B}}\left(\lambda, \ T_{B}\right)} \quad \text{where } D^{*}\left(\lambda\right) = \frac{R_{I}\left(\lambda\right)\sqrt{A_{d}\Delta f}}{\overline{\sigma}_{I}} = \frac{R_{v}\left(\lambda\right)\sqrt{A_{d}\Delta f}}{\overline{\sigma}_{v}} \end{split}$$

Sensor requirements		
Spectral Range	7-14 µm	
Spectral Channels	64	
NE∆T at 10 µm	<1 K	

$$\Delta f = \frac{1}{2 * T_{int}} \text{ and } \int_{\lambda_1}^{\lambda_2} d\lambda = \Delta \lambda$$

Sofradir-EC	Pico640 Microb	olometer Array
-------------	----------------	----------------

Spectral Range	8-14 µm (3-dB points)	
NE Δ T at 10 μ m	<75 mK @ f/1, 300 K, 30 Hz	
Estimated D*	4.6 x 10 ⁸ cm Hz ^{1/2} W ⁻¹	
Array Format	640 x 480, 17-µm pitch	

Number of spectral channels and number of co-added samples determine the achievable NE Δ T. All other parameters are fixed or optimized.

Predicted Microbolometer Performance

Coverage at 40 sample coadds

10-km GSD at nadir permits acquisition of a square frame with sides half the length of the Earth's diameter. This square image results from a linear array of 640 pixels for each wavelength band and collection of 640 frames along-track.

40-sample co-adds yields this square image in 14 min.

Full disk image of Earth is possible in 56 min.

Predicted Microbolometer Performance

NE^Δ*T* behavior as a function of wavelength

At 10 µm, 1-K NEAT is achievable with 64 spectral channels and 40 sample co-adds

Predicted Microbolometer Performance

NEAT behavior as a function of sample co-adds

Smaller NE∆T is achievable with higher coadding if more limited areal coverage is desired.

f/#	0.7
Sample rate (Hz)	30
Atmospheric transmittance	0.9
Ground temperature (K)	265
Optical transmittance	0.5
Estimated D* (cm Hz ^{1/2} W ⁻¹)	4.6 x 10 ⁸
Sample co-adds	6 – 100

Spectrometer Performance Tradespace

NE^Δ*T* as a function of sample co-adds and channel count

Optical Objective Schematic and Performance: MTF

With end goal of >20% contrast at Nyquist (30 cycles/mm) for objective, lens has ample margin to accommodate imperfections.

NASA Earth Science Technology Forum; Leesburg, Va., 28-30 October 2014

Spatial Frequency (cycles/mm)

End-to-End Optical Schematic

End-to-End Optical Performance: Image Distortion

- End-to-end design minimizes spectral image distortion.
- Spectral smile and keystone drive spectrometer requirements.

	Requirement	Prediction
Keystone	0.10 pixel	0.09 pixel
Smile	0.20 pixel	0.05 pixel

Optical design provides low distortion and thus accurate spectral positioning, minimizing the need for extensive spectral and geospatial calibration.

End-to-End Optical Performance: Encircled Energy

System CAD Model

Opto-mechanical modeling in progress

- Optical elements are bonded
- Entire system is <23 cm in length
- Spectrometer housing is 12 cm x 13 cm
 - Future work could include packaging this spectrometer into a CubeSat form factor

Structural/Thermal/Optical (STOP) Analysis

- A key component of this study is a STOP analysis of the system optical performance to validate the sensor resilience to launch loads and the GEO operating environment
- Concurrent engineering sessions review status of each discipline and interactions between them to identify design/modeling deficiencies and requirement conflicts
 - <u>More efficient turn around</u> due to automated propagation of changes in unified system model
- Engineering data and models are shared across disciplines using integrated concurrent engineering software tool, Comet[™]
 - *Modifications occur real-time* across disciplines
 - *Maintains consistency among discipline design models at each stage in design*
 - Enables parallel design modifications, increasing efficiency

Concurrent Engineering Environment Simulation Process

Comet[™] enables multi-disciplinary approach to EO sensor design

STOP Analysis Process

Finite Element Model (FEM) Development

Meshing tasks in progress

- Parts are meshed for structural and thermal analysis
 - Mesh can be refined at critical interfaces
- Mesh studies are underway to determine appropriate level of detail

Summary

- The end goal of this study is to validate emergent TIR spectral imaging technology solutions for deployment in Earth orbit.
 - Persistent high-accuracy monitoring of Earth's outgoing longwave radiation (OLR) spectrum.
- The low-SWAP design is compatible with SmallSat platforms or as a hosted payload.
- Next steps include verification of the optomechanical design through Structural/Thermal/Optical (STOP) analysis.
- The final output from the study will include a standard mission risk matrix.

All trademarks, service marks, and trade names are the property of their respective owners.

