

1

Linear Mode Photon Counting HgCdTe Avalanche Photodiode Performance and LMPC CubeSat Status

Xiaoli Sun¹, James B. Abshire¹, Jeffrey D. Beck², and Renny Fields³

¹NASA Goddard Space Flight Center, Code 690, Greenbelt MD ²DRS Technologies, C4ISR Group, Dallas TX ³The Aerospace Corp. El Segundo, CA

> NASA Earth Science Technology Forum October 28-30, 2014, Leesburg, VA Paper B4P5

10/27/14

- Introduction DRS HgCdTe e-APD
- 4x4 HgCdTe e-APD for CO₂ lidar
- 2x8 LMPC HgCdTe e-APD for the ACT-10 program
 - Major achievements
 - Measurement results
- In space technology validation with CubeSat
 - Aero-Cube 9 (AC-9) bus
 - Integrated Cooler Dewar Assembly
 - Electronics and Optics
 - Science experiments

DRS HDVIP™ e-APD Architecture

Front-side illuminated, cylindrical diode geometry in 2x8 format

Sun et al., ESTF 2014, Paper B4P5

Enabling Technology: HgCdTe e-APD

- High quantum efficiency
- Broadband spectral response (0.4 5 μm)
- High, stable, and uniform APD gain
- Nearly noiseless single carrier gain $(F \approx 1.2-1.3)$
- Low dark current
- High bandwidth
- Large dynamic range

Linear Mode Photon Counting

- An linear mode APD improves the detector sensitivity by multiplying primary photocurrent to above the circuit noise.
- APD also introduces an excess noise due to the randomness of the gain.
- Si APD and InGaAs APDs have to operate in Geiger mode (non-linear) to attain the APD gain required to detect single photons
- Linear mode photon counting detection is possible if all of the followings occur simultaneously:
 - (a) Low circuit noise;
 - (b) High APD gain;
 - (c) Low APD excess noise;
 - (d) Low dark current;
 - (e) High electrical bandwidth;
 - (f) Wide linear dynamic range

4x4 HgCdTe e-APD for CO₂ Lidar

Custom CMOS ROIC, RTIA or CTIA mode of operation

10/27/14

Sun et al., ESTF 2014, Paper B4P5

Performance of 4x4 HgCdTe e-APD

Single Photon Detection Performance

DRS 4x4 HgCdTe e-APD Single Photon Responses

First LMPC HgCdTe e-APD Array

0.06

0.04

0.02

0.06

0.04

0.02

Beck et al. First reported a LMPC HgCdTe e-APD FPA at SPIE 8033, 2011.

- 4.2 μm cutoff HgCdTe •
- 2x8 pixel read-out integrated circuit (ROIC) • in 0.18 µm Si CMOS by ADIC

8

APD Gain 90

APD Gain 250

Photon Counts as a Function of APD Gain

Bob Martin Photon

Major Achievements under the ESTO ACT-10 Program

- 1. Reproduced the LMPC HgCdTe e-APD arrays with high yield and improved performance
- 2. Reduced false event rate (FER) due to the light emission by the preamplifiers (ROIC)
 - Photons emitted from Si CMOS transistors in saturation as hot carriers traversing the pinch-off region, photon emission rate is ~10⁴ greater at 77 K compared to 300 K
 - Solution: Add metal layer between the APD and ROIC.
- 3. Increased APD Gain by decreasing the junction diameter
- 4. Improved cold shield assembly to reduce noise from ambient thermal emissions
- 5. Improved photon detection efficiency (PDE)

	2011 LMPC FPA	2014 FPA	
2011 Limitation to be Addressed		A8327-8-2 (Cu + V _{Hg} doped)	A8327-14-1 (V _{Hg} doped)
1.) FER at 50% PDE	> 1 MHz	151 kHz	151 kHz
2.) Maximum APD Gain	470	1910	1100
3.) Maximum PDE	0.50	0.72	0.66

LMPC HgCdTe e-APD **Delivered to NASA GSFC**

Sun et al., ESTF 2014, Paper B4P5

Blocking Photons Emissions from ROIC

FER ≤ 200 kHz for every pixel with blocking metal layer, a 1/5 reduction. Multiple metal layers are expected to decrease FER to diode limit (< 20 kHz).

PDE vs. False Event Rate

10/27/14

Sun et al., ESTF 2014, Paper B4P5

LMPC HgCdTe e-APD Performance Summary

Parameter	Specification	Oct. 2014 Status	Notes
Size and form factor	2x8 pixel array, 20 μm dia, 64 μm pitch	Demonstrated	Form factor can be changed if funds available for a new ROIC
Photon Detection Efficiency 0.9 to 4.2 µm	> 40% (> 50% goal)	> 50% (> 65% demonstrated)	From optical input to the analog outputs
Dark count rate	< 500 kHz (<100 kHz goal)	< 200 kHz demonstrated	Including detector dark current, ROIC and system noise
Pulse pair separation	<u><</u> 10 ns (< 6 ns goal)	8 ns demonstrated	ROIC stray capacitance limiting bandwidth
Timing jitter	< 1.0 ns rms (< 0.5 ns rms goal)	~1.4 ns rms (1.1 ns rms demonstrated)	Improvement with smaller pitch APDs expected.
Excess Noise Factor	< 1.4	1.2-1.25 (1.3-1.4 in 2011 Array)	Decreased diode junction width
Outputs	Analog and Digital (optional)	Demonstrated	Linear mode multi-photon resolution with analog outputs
Housing	LN2 Dewar (80K) with window, f/1.5 to f/4.9	Demonstrated	May be housed in an existing long lifetime space cryo-cooler
Simultaneity of Specifications	All specifications met at the same time	Demonstrated	

LMPC CubeSat Status Funded by ESTO In-space Validation of Earth Science Technologies (InVEST) Program, 2013-2016

<u>Principal Investigator</u> Dr. Renny Fields, The Aerospace Corporation

Co-Investigators

Mr. Jeffrey Beck, DRS Technologies

- Dr. James Abshire, Goddard Space Flight Center
- Dr. Xiaoli Sun, Goddard Space Flight Center

Objectives:

- Monitor LMPC HgCdTe e-APD performance in space, including radiation damage, responsivity, and SNR.
- Demonstrate one-way laser uplinks to CubeSat,
 e.g. CO2 lidar measurements and laser communications

ESTO

CubeSat Bus Mechanical Design and Electrical Architecture

© The Aerospace Corporation 2014

LMPC Bus

Assembly (wings shown)

Solar cells needed to run cryopump

<u>Anti-sun view</u> LMPC cryopump radiator has direct view to space through two windows – no heat straps

LMPC has a nominal sun-pointing orientation to keep its radiator cold

AC9

LMPC CubeSat

IDCA payload and avionics assemblies

AC9

LMPC CubeSat Optics

10/27/14

renny.a.fields@aero.org Technology and Laboratory Operations, 2014 ESTO Earth Science Technology Office

Sun et al., ESTF 2014, Paper B4P5

LMPC CubeSat Electronics

Electronics architecture

Sun /Earth Sensor Assembly

renny.a.fields@aero.org Technology and Laboratory Operations, 2014 CSTO arth Science Technology Office

NACE OF

LMPC Payload Signal Processing

	Experiment	Frequency	Purpose
1A	Radiation	Once per week	Dark current measurement on array, impact of radiation
1B	SNR	Once per week	SNR from on board source vs. time on orbit
2	Moon image	Once per lunar month	Radiometric calibration of sensitivity vs. time
3	Earth Image	Once per week	Radiometric sensitivity to relevant earth emissions
4A	Array track	Once or twice	Demonstrate ACS control to single pixel
4B	CO ₂ measurement	Once	Measure response at CO ₂ band
4C	Comm	Once or as needed	Demonstrate a communications link
4D	Altimetry	Once	Demonstrate LIST collections

Experiment 1 – Dark current measurement

Goal

• Trend DRS FPA noise (dark current) throughout mission

Frequency

• Once per week

Data

- FPA dark counts per second
- FPA temperature

Expected result

- Dark current will increase throughout mission
- Dark current will increase with detector temperature
- Radiation damage anneal at near room temperature

AC9 LMPC

Filter Wheel = OPEN (pos 1); LEDs = OFF; ACS = point to deep space + solar panels to sun

23

10/27/14

renny.a.fields@aero.org Technology and Laboratory Operations, 2014 Sun et al., ESTF 2014, Paper B4P5

Experiment 2 – Response to on board LEDs

Goal

 Calibrate and trend FPA response using internal LEDs at discrete frequencies of interest (1.06, 1.57, 2.05 µm)

Frequency

Once per week individually pulse each LED

Data

- Record photon counts and pulse waveforms from each LED
- FPA temperature

Expected result

- Signal to noise ratio (SNR) remains constant throughout the mission
- SNR vs. temperature stays the same trend

Filter Wheel = CLOSED (pos 3); LEDs = ON; ACS = solar panels to sun

10/27/14

renny.a.fields@aero.org Technology and Laboratory Operations, 2014 Sun et al., ESTF 2014, Paper B4P5

Experiment 3 – Image moon (standard radiometric source)

Goal

Calibrate and trend FPA response

Frequency

Once per lunar month

Data

- Record raw data from FPA during lunar transit
- FPA temperature

Expected result

Detector sensitivity stays constant but dark count rate increases with temperature and time

Filter Wheel = alternate 1064, 1572, 2050 Filter (pos 4,5,6); LEDs = OFF; ACS = point to moon

10/27/14

25

Sun et al., ESTF 2014, Paper B4P5

Experiment 4 – Image sunlit earth

Goal

 Demonstrate FPA as an earth weather sensor by imaging the earth and cloud cover as a time varying scene. Correlate with corresponding camera images.

Frequency

Once per week

Data

- Record raw data from FPA during imaging of earth scene
- FPA temperature
- Corresponding visible imagery

Expected result

• Observe scene change at three wavelength as those from other Earth orbiting satellite images

Filter Wheel = alternate 1064, 1572, 2050 Filter (pos 4,5,6); LEDs = OFF; ACS = point nadir

10/27/14

renny.a.fields@aero.org Technology and Laboratory Operations, 2014

Experiment 5 – Detecting ground laser light Goal

 Demonstrate FPA can track a source and feed back to satellite ACS. Source can be a ground laser or a star (point source). Ground sources may be any of three lasers: 1064, 1572 or 2050 nm. Use onboard laser beacon for ground telescope pointing aid.

Frequency

· As needed to support science experiments

Data

- · ACS data demonstrating lock onto point source
- FPA temperature
- Corresponding visible imagery

Expected result

• LMPC record ground laser signals

Detector calibrations; One-way CO2 lidar demonstration; Laser communication demonstration

Filter Wheel = alternate 1064, 1572, 2050 Filter (pos 4,5,6); LEDs = OFF; ACS = track a point source 10/27/14 Sun et al., ESTF 2014, Paper B4P5

27

GODI SPAC

AC9

- Successful demonstration of a new detector technology under the ESTO ACT-10 program, 2012-2014.
 - An emerging infrared photon detector array technology for 0.4-5 μm wavelength range.
 - 80-90% quantum efficiency, 500-1000 avalanche gain, near zero excess noise, and linear output.
 - Radiation tolerant to typical Earth orbit environment based on the proton radiation test result in 2013.
- A CubeSat in-flight demonstration with an Integrated Dewar Cooler Assembly is currently being developed under the ESTO InVEST program and will be launched in 2016.

Backup Slides

Xiaoli Sun¹, James B. Abshire¹, Jeffrey D. Beck², and Renny Fields³

¹NASA Goddard Space Flight Center, Code 690, Greenbelt MD ²DRS Technologies, C4ISR Group, Dallas TX ³The Aerospace Corp. El Segundo, CA

> NASA Earth Science Technology Forum October 28-30, 2014, Leesburg, VA Paper B4P5

10/27/14

Science Experiments

© The Aerospace Corporation 2014

NASA

Experiment 1A – Dark current measurement Goal

• Trend DRS FPA noise (dark current) throughout mission

Frequency

• Once per week

Data

- FPA dark counts per second
- FPA temperature

Expected result

- Dark current will increase throughout mission
- Dark current will increase with detector temperature

Filter Wheel = OPEN (pos 1); LEDs = OFF; ACS = point to deep space + solar panels to sun

Experiment 1B – Signal to noise ratio measurement

Goal

Frequency

· Once per week individually pulse each LED

Data

- Record photon counts and pulse waveforms from each LED
- FPA temperature

Expected result

- · SN will decrease throughout mission
- · SN will decrease with detector temperature

Filter Wheel = CLOSED (pos 3); LEDs = ON; ACS = solar panels to sun

Experiment 2 – Image moon (radiometric source)

Goal

Calibrate and trend FPA response

Frequency

• Once per lunar month

Data

- Record raw data from FPA during lunar transit
- FPA temperature

Expected result

• Calibrate detector sensitivity.

Filter Wheel = alternate 1064, 1572, 2050 Filter (pos 4,5,6); LEDs = OFF; ACS = point to moon

Experiment 2 – Image moon (radiometric source) - continued

Assumptions

- Receiver lens diameter: 4-5 mm
- Receiver optics : 50% transmission
- FPA: 50% Quantum efficiency
- Optical bandpass filter widths: 1 nm FWHM
- Detector dark count rate: 100 KHz

Radiometry

- Spectral irradiance of the entire lunar disk outside Earth's atmosphere: 0.0026W/m²µm at 1064 nm; 0.0014W/m²µm at 1572nm
- Optical power on each detector pixel:
 - At 1064 nm: 0.0026W/m²µm*(1nm)*[pi (4mm/2)²]*50%/4.4² = 0.84 pW (2.3 MHz rate at output)
 - At 1572 nm: 0.0014W/m²µm*(1nm)*[pi (4mm/2)²]*50%
 = 0.45 pW (1.8 MHz rate at output)
- Signal Margin = ~20x (13dB) above the average dark count rate

Experiment 3 – Image earth

Goal

• Demonstrate FPA as an earth weather sensor by imaging the earth and cloud cover as a time varying scene. Correlate with corresponding camera images.

Frequency

• Once per week

Data

- · Record raw data from FPA during imaging of earth scene
- FPA temperature
- · Corresponding visible imagery

Expected result

• Observe scene change. Confirm with visible camera images.

Filter Wheel = alternate 1064, 1572, 2050 Filter (pos 4,5,6); LEDs = OFF; ACS = point nadir

Experiment 3 – Image earth - continued

Assumptions

- AC-9 pointed nadir
- Extended source (clouds) over entire FOV
- Altitude: 600km with Albedo = 100%
- Receiver lens diameter: 4 mm
- Receiver optics: 50% transmission
- FPA: 50% Quantum efficiency
- Optical Bandpass filter bandwidth: 1 nm FWHM
- Detector dark count rate: 100 KHz

Radiometry Calculation:

- Solar irradiance of sunlit clouds above Earth atmosphere: 0.68 W/m² nm at 1.06 and 0.27 W/m² at 1.570 um
- Scene area seen by receiver with 2 mrad IFOV (spatial resolution)

600 km*2mrad = 1.2 km

- Optical power on each detector pixel
 - At 1064 nm: 0.68W/m²nm/pi*(2mrad)² (1nm)[pi (4mm/2)²]*50%
 = 5.4 pW (15 MHz detected photon rate)
 - At 1572 nm: 0.27W/m²nm/pi*(2mrad)²(1nm)[pi (4mm/2)²]*50%
 = 2.2 pW (8.7 MHz detected photon rate)
- Signal Margin = 15x to 8.7x (12 to 9.4dB)

LMPC Mission Experiment 4A – FPA feedback to ACS

Goal

 Demonstrate FPA can track a source and feed back to satellite ACS. Source can be a ground laser or a star (point source). Ground sources may be any of three lasers: 1064, 1572 or 2050 nm. Use onboard laser beacon for ground telescope pointing aid.

Frequency

· As needed to support science experiments

Data

- · ACS data demonstrating lock onto point source
- FPA temperature
- Corresponding visible imagery

Expected result

• LMPC will maintain pointing based on payload feedback

Filter Wheel = alternate 1064, 1572, 2050 Filter (pos 4,5,6); LEDs = OFF; ACS = track a point source

LMPC Mission Experiment 4B – Measure CO₂ absorption

Goal

 Measure CO₂ absorption in atmosphere column from a 1572 nm laser ground source (ASCENDS mission). Use onboard laser beacon for ground telescope pointing aid.

Frequency

Once

Data

- Record raw data from FPA during illumination
- ACS data demonstrating lock onto ground source
- FPA temperature
- Corresponding visible imagery

Expected result

• CO₂ absorption will vary depending on atmosphere thickness

Filter Wheel = 1572 Filter (pos 6); LEDs = OFF; ACS = track ground source

Experiment 4B – Measure CO2 absorption - continued

Assumptions

- CubeSat points to ground station to within 2x2 array of pixels (4 mrad)
- Ground station laser: 1572 nm, 25 uJ/pulse, 1us FWHM, 10 kHz, (airborne CO2 Sounder transmitter)
- Laser Beam divergence = 1.8 mrad
- Ground telescope pointing: 0.3 mrad
- Range: 1000 km
- Receiver diameter: 4 mm
- Receiver optics : 50%
- FPA: Quantum efficiency: 50%
- Background and dark noise: 1 MHz

Radiometry:

- Total laser signal attenuation (propagation losses) [4mm/(1.8mrad*1000km)]² *50% = 2.5e-12
- Received laser pulse energy per pulse on each detector pixel 25uJ*2.5e-12 = 3.1e-17 J/pulse (120 detected photons/pulse at 1572 nm)
- Minimum detectable signal of the detector: 4 photons/pulse
- Signal Margin: 30x (15dB)

LMPC Mission Experiment 4C – Optical communication link

Goal

 Demonstrate one-way (uplink) optical communication at low data rates. Use onboard laser beacon for ground telescope pointing aid.

Frequency

Once

Data

- Raw data from FPA comprising a message that is stored
- ACS data demonstrating lock onto ground source
- FPA temperature
- Corresponding visible imagery

Expected result

LMPC will detect very low uplink power

Filter Wheel = 1572 Filter (pos 5); LEDs = OFF; ACS = track ground source

LMPC Mission Experiment 4D – Receive LIST signals

Goal

• Measure optical signals similar to those expected for LIST. Use onboard laser beacon for ground telescope pointing aid.

Frequency

• Once

Data

- Record raw data from FPA during illumination
- · ACS data demonstrating lock onto ground source
- FPA temperature
- · Corresponding visible imagery

Expected result

• LMPC will receive LIST signals

Filter Wheel = 1064 Filter (pos 4); LEDs = OFF; ACS = track ground source

renny.a.fields@aero.org Technology and Laboratory Operations, 2014

LMPC Mission

Experiment 4D – Receive LIST signals - continued

Assumptions

- CubeSat points to ground station to within 2x2 array of pixels
- Ground station laser: 1064 nm, 0.5-3 ns pulse width, 25 uJ/pulse, 10 kHz.
- Laser Beam divergence = 1.8 mrad
- Ground telescope pointing: 0.3 mrad
- Range: 1000 km
- Receiver diameter: 4 mm
- Receiver optics : 50%
- FPA: Quantum efficiency: 50%
- Background and dark noise: 1 MHz

Radiometry (for a 25 uJ/pulse transmitter):

- Total laser signal attenuation (propagation losses) [4mm/(1.8mrad*1000km)]² *50% = 2.5e-12
- Received laser pulse energy per pulse on each detector pixel 25uJ*2.5e-12*50% = 3.1e-17 J/pulse (83 detected photons at 1064 nm)
- Assuming the minimum detectable signal: 4 photons/pulse Signal Margin: 21x (13dB)

AC9

LMPC Mission Optical ground station resources

Modified commercial telescope (Vixen-VMC200L)

Mt Wilson Observatory operated by Aerospace Corp.

1.2 meter Telescope Facility at Goddard's Geophysical and Astronomical Observatory (GGAO)

Payload Signal Processing Electronics

© The Aerospace Corporation 2014

Raw snapshot capture

- Capture raw, full-rate ADC output from a single, preselected channel in short, intermittent bursts.
 - Trigger event could be pulse detection, countdown timer, etc.
 - e.g. Capture 1 µsec window centered around each of the last fifty events on input channel 7.
- Requires a small high-speed memory, but can be subdivided to serve multiple purposes
 - e.g. 64 windows of 512 samples
 - e.g. One window of 32768 samples
- Store data at leisure for download to ground or on-board software analysis.
 - To manage downlink volume, most data-processing must be on-board.
 - FPGA limited to simple real-time processing. Most analysis will be performed by regular software running on ARM.
 - ARM will run a GNU/I inux environment with full access to common applications and utilities. (e.g. C++ and/or Python libraries.)

Example Analysis Concept: Pulse spectrum estimation

- Real-time data triggering and capture by FPGA:
 - Monitor a preselected input channel using high-speed ADC (500 MHz).
 - Detect input pulses. (i.e. Oscilloscope-style trigger.) For each pulse, store a window of 1,024 samples, centered on rising edge.
 - Continue storing windows until timeout or 10,000 capture events.
 - Note: Number of windows and window size are examples only. Maximum sizes are limited only by memory capacity.
- Post-capture analysis by ARM software:
 - Read each stored capture window.
 - Perform FFT and compute magnitude.
 - Noncoherent accumulation of output spectrum over all windows.
 - Store final output spectrum for later download.

Pulse counting and histograms (Real-time analysis)

- Histogram can operate in linear mode or Geiger mode.
 - Geiger mode is driven by photon-counter electronics.
 - Linear mode can be driven by either ADC.
 - Adjustable thresholds to estimate photon count from peak height.
 - Both configurations measure count rate (counts per unit time).
- Can accumulate data in real-time for all channels simultaneously.
- Start first time interval a fixed delay after command or event.
 - e.g. Command from ground station, RTC, or flight computer
 - e.g. Internal timer, capture histogram once every three seconds
- Each histogram bin is the accumulation of count events within a given time interval.
 - Interval can be adjusted from 2 nsec to 10+ sec.
 - Any number of histogram bins up to 64k (?)

Laser communication receiver (Real-time analysis)

- Receive On-Off-Keyed laser communication signals from any selected channel.
- Real-time tracking and demodulation up to 250 MBaud.
 - Note: This is the upper limit set by capture hardware. Link budget and channel conditions may further limit maximum rate.
- Timing tracking, packet detection, FEC, and other logic can be recycled from AC7.

