

The Ultrawideband Software-Defined Microwave Radiometer (UWBRAD)

Mustafa Aksoy¹, Joel T. Johnson¹, K. C. Jezek², C. C. Chen¹, M. Durand², L. Tsang³, G. Macelloni⁴

¹ ElectroScience Laboratory, The Ohio State University
 ² Byrd Polar Research Center, The Ohio State University
 ³ University of Washington, Dept. of Electrical and Computer Engineering
 ⁴ CNR-IFAC Italy

ESTF2014 October 28, 2014

Motivation

- Understanding dynamics of Earth's ice sheets important for future prediction of ice coverage and sea level rise
- Extensive past studies have developed a variety of sensing techniques for ice sheet properties, e.g. thickness, topography, velocity, mass, accumulation rate,...
- Limited capabilities for determining ice sheet internal temperatures at present
 - Available from small number of bore holes
- Internal temperature influences stiffness, which influences stress-strain relationship and therefore ice deformation and motion
- Can ice sheet internal temperatures be determined using microwave radiometry?

Outline

- Ice sheet physical properties
- Emission physics and DMRT-ML
- UWBRAD
- Modeling and Retrieval Studies
- Radiometer, Digital Subsystem and Antenna Design
- Conclusions

Ice Sheet Temperature Properties

A simple model of ice sheet internal temperatures is

$$T(z) = T_s - \frac{G\sqrt{\pi}}{2k_c\sqrt{\frac{M}{2k_dH}}} \left(\text{erf}\left(z\sqrt{\frac{M}{2k_dH}}\right) - \text{erf}\left(H\sqrt{\frac{M}{2k_dH}}\right) \right)$$

(assumes homogeneous ice driven by geothermal heat flux, no lateral advection)

Temperature increases with depth; more rapid increase for lower M

Ice Sheet Properties

- Upper layer of ice sheet comprised of snow: high volume fraction of ice crystals in air
 - "Dense medium" from electromagnetic point of view
 - Mass density of snow determines volume fraction of ice
 - Medium typically represented as air containing spherical ice particles
 - Particle radius typically characterized by the "grain size" parameter
- Density on average increases with depth
 - Volume fraction of ice increases and passes 50% at ~ several m depth
 - Medium is now air inhomogeneities in ice background
 - Inhomogeneity volume fraction on average decreases with depth past this point
 - Grain size increases with depth
- Medium on average approaches homogeneous ice at depths ~ 100 m
- "Random" variations in density and composition with depth on top of the average trends can appear as "layering" effects

Emission Physics

In absence of scattering, thermal emission from ice sheet could be treated as a 0th order radiative transfer process

$$T_B(z_s = 0) = (1 - R_{air/snow}) (\int_0^{z_s} (\kappa_a + \kappa_s) T e^{-\int_0^{z_s} (\kappa_a + \kappa_s) dz} dz + T_B(z = H) e^{-\int_0^{z_s} (\kappa_a + \kappa_s) dz})$$

- Similar to emission from the atmosphere: temperature profiling possible if strong variations in extinction with frequency (i.e. absorption line resonance)
- Ice sheet has no absorption line but extinction does vary with frequency
 - Motivates investigating brightness temperatures as function of frequency
- Inhomogeneities causing scattering or other layering effects are additional complication
- Need models that can capture effect of scatterers

Upwelling brightness temperature $T_B(z_s=0)$

R_{air/snow} reflection coefficient

Temperature T(z)

Absorption coefficient κ_a

Upwelling brightness from subsurface $T_B(z_s=H)$

DMRT-ML Model

- DMRT-ML model (Picard et al, 2012) widely used to model emission from ice sheets (Brucker et al, 2011a) and snowpacks (Brucker et al, 2011b)
 - Uses QCA/Percus-Yevick pair distribution for sticky or non-sticky spheres
 - RT equation solved using discrete ordinate method
 - Need layer thickness, temperature, density, and grain size for multiple layers
 - Recommended grain size is 3 X in-situ measured grain sizes
- DMRT-ML computed results for DOME-C density/grain size profiles vs. frequency

Analysis

- Ice sheet brightness temperatures influenced by a variety of physical effects
- Brightness temperatures at differing frequencies are sensitive to differing portions of the ice sheet and to differing physical effects (e.g. scattering)
- Separating internal temperature information from current radiometer (e.g. L band single frequency or higher single frequency) systems difficult
- Future measurements with multi-frequency radiometers offer potential to extract more information on subsurface temperatures
 - A "model-based" retrieval will be required

Ultra-wideband software defined radiometer (UWBRAD)

- We propose design of a radiometer operating 0.5 2 GHz for internal ice sheet temperature sensing
- Requires operating in unprotected bands, so interference a major concern
- Address by sampling entire bandwidth (in 100 MHz channels) and implement real-time detection/mitigation/use of unoccupied spectrum
- Supported under NASA 2013 Instrument Incubator Program
- Goal: deploy in Greenland in 2016
- Retrieve internal ice sheet temperatures and compare with in-situ core sites

Frequency Channels	0.5-2 GHz, 15 x 100 MHz channels
Polarization	Single (Right-hand circular)
Observation angle	Nadir
Spatial Resolution	1 km x 1 km (1 km platform altitude)
Integration time	100 msec
Ant Gain (dB)	11 dB
/Beamwidth	30°
Calibration (Internal)	Reference load and Noise diode sources
Calibration (External)	Sky and Ocean Measurements
Noise equiv dT	0.4 K in 100 msec (each 100 MHz channel)
Interference	Full sampling of 100 MHz bandwidth in 16 bits
Management	resolution in each channel; real time "software
	defined" RFI detection and mitigation
Initial Data Rate	700 Megabytes per second (10% duty cycle)
Data Rate to Disk	<1 Megabyte per second

Initial Retrieval Studies for Greenland

- Past retrieval study focused on Antarctic geophysical cases
- Low accumulation rates result in temp profiles that increase with depth
- Strong changes in TB vs. frequency
- Higher accumulation rates in Greenland (at least for GISP site) result in more uniform temp profile vs. depth
- Smaller changes in TB vs. frequency
- Still observable by UWBRAD

Greenland Retrieval Studies

- Generated simulated UWBRAD observations "GISP-like" ice sheets for varying physical properties (500 "truth" cases)
 - Including averaging over density fluctuations
- For each truth case, generate 100 simulated retrievals with UWBRAD expected noise levels (i.e. ~ 1 K measurement noise per ~ 100 MHz bandwidth)
- Select profile "closest" to simulated data as the retrieved profile, and examine temperature retrieval error

- Additional simulations needed with wider range of Greenland cases
 - Currently examining Operation IceBridge Greenland ground truth data along expected flight path

Radiometer Design

- Three major subsystems: front end, digital backend, antenna
- Front end:
 - Low frequencies of interest enable board-level implementation
 - Traditional Dicke-switch design requires isolators to stabilize amp input impedance
 - Not easily available for 2:1 or more bandwidth
 - Recent "pseudo-correlation" designs eliminate need for isolator

Radiometer Operation Basics

- The pseudo-correlation radiometer proposed for UWBRAD operates by adjusting the phase of the reference and antenna signals and summing them in such a manner as to cancel the contributions from one of the input signals at a time
- Alternating the polarity of one of the 0° /180° phase switches alternates which signal will be observed on the hybrid outputs

0° position

180° position

Digital Subsystem

- Digital Subsystem based around the ATS9625 card from AlazarTech, Inc.
 - 2 channel, 250 MSPS by 16 bit data acquisition card
 - Achieves high throughput to host PC
 - Team has past experience with similar AlazarTech board and software interface
 - RFI processing to be performed on host PC
- Each board can handle 2 100 MHz channels;
 8 boards used for 15 channels
- One host PC can accommodate 2 ATS9625 boards
 - Need 4 PC's
- Early acquisition of 2 boards and host PC will be used for throughput and software studies

Antenna Design

Base =7.2" Length=30" 20 turns GND=12" Dia.

Conical Log Spiral Antenna

High Gain Symmetric Pattern Circular Polarization **Ultra-Wide Band** Possible to be Collapsed

Field Program Planning

- Antarctica, Greenland, Russian/Canadian ice caps are desirable sites
- Antarctica pursued in proposal development via potential collaboration with Operation IceBridge
 - Uncertainties with Operation IceBridge McMurdo operations shifted focus instead to Greenland; still interested in Antarctica if possible
- Tentative priority of Greenland sites (based on known surface conditions and availability of ancillary data)
 - 1) GISP2/GRIP (dry snow zone and substantial ancillary data)
 - 2) NGRIP (dry snow zone, wet bed in area, some ancillary data)
 - 3) Camp Century (dry snow zone, some data available- 1966 borehole)
 - 4) NEEM (most recent site, dry snow zone but ancillary data are difficult to retrieve so far)
 - 5) Dye 3 (experiences surface melt but substantial ancillary data)

Canadian Ice Caps as contingency:

- 1) Devon Island (ancillary data available, surface conditions need to be investigated, Canadian Cryovex validation site)
- 2) Agassiz Ice Cap (ancillary data available, surface conditions need to be investigated)

Conclusions

- Multi-frequency brightness temperature measurements can provide additional information on internal ice sheet properties
 - Increased penetration depth in pure ice and reduced effect of scatterers as frequency decreases
- UWBRAD proposed to allow further investigations
 - Website at: http://bprc.osu.edu/rsl/UWBRAD
- UWBRAD began April 2014, goal for deployment in 2016 to demonstrate performance

