National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Approaching the finish line with GeoSTAR

Bjorn Lambrig

Todd Gaier, Alan Tanner, Kerke Lim, Christia

ngaslahii, Boon

Jet Propulsion Laboratory California Institute of Technology [†] University of Michigan

Earth Science Technology Forum Leesburg; October 27-29, 2014

Copyright 2014 California Institute of Technology. Government sponsorship acknowledged

GeoSTAR Development History Decadal survey: PATH mission

PATH applications

	Precipitation and Weather	r All-weather soundings, in cloudy and stormy scenes			
	forecast	ing Soundings @<50/25 km every 15-30 minutes (continuous)			
		Synoptic rapid-update soundings			
		Forecast error detection; 4DVAR applications			
	Hurrica	ne & Location, intensity & vertical structure of deep convection			
Decadal Rough Survey Cast	severe-s	storm NRT atmospheric instability; tornado precursor detection			
Mittion Mittion Description Orbit Instrument: Estimat	diagnos	tics Intensification/weakening in NRT, frequently sampled			
CLARREO Solar radiation: spectrally resolved LEO, Absolute, spectrally- (NASA forcing and response of the climate Precessing resolved interferometer		Measure all H2O phases: vapor, liquid, ice, rain/snow			
portion) system SMAP Soil moisture and freeze/thaw for LEO, SSO L-band radar system and matter and systematic	and the second	Operational analysis, forecast verification			
ICESat-II Ice sheet height changes for climate LEO, Non- Laser altimeter \$300 N SSO		Improved model microphysics			
DESDynI Surface and ice sheet deformation for LEO, SSO L-band InSAR \$700 N Laser altimeter	Soa surface Rain	Full hemisphere $(a) \le 25$ km every 15 minutes			
ecosystem health	Jea Sunac	Directly measure storm and diurnal total rainfall: predict flooding events			
Tuneframe: 2013 – 2016, Missions listed by cost HyspIRI Land surface composition for agriculture LEO, SSO Hyperspectral spectrometer \$300 N	temperatur	Snowfall, light rain, intense convective precipitation			
and mineral characterization; vegetation types for ecosystem health	Tropos	oheric 1000-300 mb; very high temp.res.; in & below clouds			
SWOT Ocean lake, and river water levels for LEO, SSO Ka-band wide swath radar \$450 N	wind profiling Air quality applications (pollution transport)				
ocean and inland water dynamics C-band radar GEOAtmospheric gas columns for air quality GEOHigh and low spatial \$550 N	Climate	Stable & continuous MW observations			
CAPE forecasts, ocean color for coastal resolution hyperspectral ecosystem health and climate emissions imagers ACE denote and clowd morther for climate UEO SCO Backscratter lidar S200 N	research	Long term trends in T & q and storm statistics			
and water cycle, ocean color for open ocean biogeochemistry Doppler radar	Temperatu	Fully resolved diurnal cycle			
Timeframe: 2016-2020, Missions listed by cost	humidity pr	ENSO; monsoon; tropical moisture flow into the US			
LIST Lines and water proof. hazards and water proof. PATT: hazards and water proof. Inten requerce, all-weather temperature GEO MW array spectrometer (160).	"Science continuity": GeoSTAR ≈ AMSU				
and humidity soundings for weather					
GRACE-II Flight temporal resolution gravity beins 100, SSO Microwave or idser ranging 3430 M for tracking large-scale water movement 300 SSO Ku and X-band radars 5500 N	Tables and Statements 11				
availability K and Ka-band radiometers GACM Ozone and related gases for LEQ. SSO UV spectrometer \$600 N	the second s				
intercontinental air quality and IR spectrometer statospheric come layer prediction Microwave limb sounder	Constraints on				
(Demo) forecasting and pollution transport	models for boundary	geographic			
	lavar slavel and	distribution and			
	layer, cloud, and	distribution and			
100	precipitation	magnitude of storm			
1025	processes	surge and rain			
	processes	accumulation			
		accumulation			
DATTI II. L C.		0 0.000			
PATH High freq	uency, an-weather temperature GE	5450 M			
and humi	ad humidity soundings for weather = GooSTAR				
forecastin	ng and SST ^e				
· · · · ·					

Severe storms may be getting worse

Weather Fatalities

PC Tornado Watches per County (1999-2008)

GeoSTAR timeline

- Concept development
 - NMP/EO-3 proposal (1998-1999)
 - NRC white paper (2005)
 - NRC Decadal Survey (2007)
- ESTO technology development
 - 1. IIP-03 (2003-2006): Proof-of-concept prototype
 - 2. ACT-05 (2006-2008): MIMRAM receivers
 - 3. IIP-07 (2008-2011): Key technology
 - 4. IIP-10 (2011-2015): Risk reduction
- Space implementation
 - Venture mission (before 2020?)
 - PATH mission (~202X?)

GeoSTAR Development – IIP-03 Proof of concept

Earth Science Technology Office

Calibration & performance assessment

Earth Science Technology Office

GeoSTAR Development – ACT-05

GeoSTAR Development – IIP-07 Technology development

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

GeoSTAR Development – IIP-07

183-GHz receiver (fab 50 samples)

NMP

GeoSTAR Development – IIP-07

New antenna design (demo)

NMP/

Allensin LE DIO 21 II OF 11 II

GeoSTAR Development – IIP-07

Antenna subarray assemblies

z

er

n-IC)

al

2D

National Aeronautics and GeoSTAR IIP-10: Correlator, Part 1 Space Administration Jet Propulsion Laboratory California Institute of Technol Pasadena, California Small 5x5 design demo chip

Small 5x5 design demo chip

NMP

National Aeronautics and Space Administration California Institute of Technology California

Small 5x5 design demo chip

Correlator ASIC development

A 5x5 digitizer/correlator and evaluation board was built to provide risk reduction for the development of the larger A/D correlator ASIC.

- Test A/D and correlator cells together to uncover design or implementation flaws
- Determine crosstalk between channels

Initial tests indicated problems, but design was fixed, chip respun and tested Tested for rad-hardness: OK

reduc

Chip and test board

Chip (2.4 mm square)

Test board, with chip heat sink

Substrate carrier (3/4" square)

Aeronautics and Iministration Jusion Laboratory Jusion Laboratory Jusion Laboratory Jusion Laboratory

Chip orientation

Specs & power consumption

	This work			
# of Channels	128			
# of Correlators	4096			
Channel Bitwidth	2			
On-Chip ADCs	yes, 128			
Logic Family	static			
Correlation Efficiency (%)	>90% @ >30dBm			
Isolation (dB)	-42.4			
Technology	65nm			
Total Power (W)	1.44 @775mV, 1GHz 3.73@1V, 1.5GHz			
Energy per Correlation (pJ/correlation/cycle)	0.35 @775mV, 1GHz 0.61 @1V, 1.5GHz (2b corr + ADC)			
Core Area (mm ²) Chip Area (mm ²)	5.9 17.9			
Max Performance (T correlation/s)	6.14 @1V, 1.5GHz			

^a: a 1-bit correlation is just XOR

Max clock rate 1.6 GHz (1 GHz required)

Excellent correlation efficiency

GeoSTAR IIP-10: Final phase

- Further testing of correlator ASIC
 - Complete full correlator board hosting new chip
 - Full functional testing of new chip
- System testing
 - Assemble small 183-GHz antenna array
 - Using miniature ultra-low-power MIMRAM receivers
 - Integrate full system with correlator
 - Characterize system performance
 - Imaging demonstration

What can we do with GeoSTAR?

TIME TESTED MEASUREMENTS AND DATA PRODUCTS USING MATURE ALGORITHMS

GeoSTAR will make similar measurements from GEO as AMSU currently does from LEO, but every 15 minutes vs. 2 times per day High-intensity events can be sampled in 5 minutes or less

GeoSTAR will uniquely provide measurement of *Temperature/moisture/clouds; Wind; Precipitation*

simultaneously, continuously and in 3 dimensions

Parameter	Horizontal	Vertical	Temporal	Precision	Accuracy	'n.	s.	S
Brightness temperatures	25 - 50 km	N/A	5-20 min.	0.5-1.5 K	0.5 K	Thermody	Microphy	Dynamic
Temperature	25 - 50 km	2-3 km	10-20 min	1.5-2.5 K	0.5 K	\checkmark		
Water vapor				25-40%	10%	\checkmark		
Wind vector (u,v)				8 m/s	2 m/s			
Reflectivity				4-6 dBZ	2 dBZ		\checkmark	
Rain rate		N/A		5 mm/hr	2 mm/hr	\checkmark	\checkmark	
LWP				25%	10%	\checkmark		
IWP				25%	20%		V	11/

Precision & accuracy reflect performance of MIRS (except for reflectivity)

Earth Science Technology Office

Pre-PATH mission

We are approaching readiness for space mission

Ready for Venture-class mission now

- Timeline: Start development ~2014 \rightarrow Launch ~2018
- Objective: PATH science subset demonstrator
- Instrument: "GeoSTAR-lite" all key technologies @ TRL 6
 - Correlator baseline: Omnisys 32x32 ASIC (TRL 6: has been rad tested)

 meets science requirements

Pre-PATH mission

Swedish 32x32 correlator Tested and verified

Pre-PATH mission

Radiation test results: No susceptibility of concern

Summary

- STAR concept demonstrated in IIP-03
 - Developed a functional 50-GHz STAR demonstrator
- Key technologies developed in IIP-07
 - Developed miniature low-power 183-GHz MMIC receivers
 - Developed new alias-rejecting antenna array design
- Ready for PATH mission after IIP-10
 - Full-size 64x64 correlator ASIC is a success!
 - − Can start development ~2015 \rightarrow launch ~2020
- We have advanced the technology from Tier-3 level to Tier-1 level – a major achievement

