Technology Development for a Hyperspectral Microwave Atmospheric Sounder (HyMAS)

W. Blackwell, C. Galbraith, L. Hilliard (NASA GSFC), P. Racette (NASA GSFC), and E. Thompson

ESTF

28 October 2014

SPACE FLIGHT CENTER

This work is sponsored by the National Oceanic and Atmospheric Administration under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

- HyMAS: Motivation and Overview
 - Intermediate Frequency Processor (IFP)
 - Receiver Front-End Electronics
 - Airborne Instrument Accommodations
 - Current and Future Work

- Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance
- HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth
- A principal challenge is Size/Weight/ Power scaling
- Objectives of this work:
 - Demonstrate ultra-compact (100 cm³) 52-channel IF processor (enabler)
 - Demonstrate a hyperspectral microwave receiver subsystem
 - Deliver a flight-ready system to validate HM sounding

Ready for future AITT

HyMAS System Components Roles and Responsibilities

IFP enables ultracompact, high-performance radiometry

MicroMAS

3U cubesat with scanning 118-GHz radiometer

9 channels for temperature profiling and precipitation imaging

July 13, 2014 launch

MiRaTA

3U cubesat with 60, 183, and 206 GHz radiometers and GPS radio occultation

10 channels for temperature, moisture, and cloud ice measurements

July 2016 launch expected

DOME

Constellation of highperformance cubesats for high-revisit observations of severe storms

NAST-M

Radiometer upgrade funded by NOAA to include IFP back end

Substantial performance improvement at > 10X SWaP reduction

- HyMAS: Motivation and Overview
- Intermediate Frequency Processor (IFP)
 - Receiver Front-End Electronics
 - Airborne Instrument Accommodations
 - Current and Future Work

- IF processor functions
 - Amplify, channelize and detect 18-29 GHz IF bands (52 channels)
 - Post-detection filtering, A/D conversion, data processing
- Scalable in number of channels, processing capability
- LTCC microwave filters for high performance, small size
 - Assess state of technology for more aggressive (frequency, bandwidth) designs and more compact structures
- COTS parts for availability, low cost
 - Microwave MMICs
 - Analog/digital ICs and passives
- Ultra-compact form factor (10 x 10 x 1 cm³) and low DC power requirement (<100 mW/ch) drives the architecture and design
 - Leverage high performance miniature microwave filters, COTS MMICs, electronics packaging

Gain Budget – 118 GHz channels

	Antenna	Feed	W/G	Filter	LNA	Mixer	IF amp 1	Coax	Att 1	IF amp 2	Att 2	IF amp 3	Att 3	IF amp 4	Att 4	IF amp 5	Att 5	IF Filter
B (Hz)	3.00E+10	3.00E+10	3.00E+10	1.10E+10	1.25E+09													
Tb (K)	300																	
G (dB)		-0.2	-0.5	-1	15	-6	30	-2	0	15	0	15	-6	15	0	0	0	-16
P (W)	1.24E-10	1.19E-10	1.06E-10	3.08E-11	9.74E-10	2.45E-10	2.45E-07	1.54E-07	1.54E-07	4.88E-06	4.88E-06	1.54E-04	3.88E-05	1.23E-03	1.23E-03	1.23E-03	1.23E-03	3.50E-06
P (dBm)	-69.1	-69.3	-69.8	-75.1	-60.1	-66.1	-36.1	-38.1	-38.1	-23.1	-23.1	-8.1	-14.1	0.9	0.9	0.9	0.9	-24.6
Te (K)	3.00E+02	2.86E+02	2.55E+02	2.03E+02	6.41E+03	1.61E+03	1.61E+06	1.02E+06	1.02E+06	3.21E+07	3.21E+07	1.02E+09	2.55E+08	8.07E+09	8.07E+09	8.07E+09	8.07E+09	2.03E+08

- Demonstrated 9-channel IF processor
 - Scalable to larger numbers of channels
 - RF MMIC amplifiers and detectors
 - Post-detector analog processing and noise characterization
 - Data conversion and processing and software
- High frequency LTCC technology characterized for microwave filters
 - Tolerances within expectations confirming viability of representative circuits up to ~ 30 GHz
 - Very good measured SIW filter results

9-ch IFP Prototype PCB

Top (FR4)

- PCB is composed of FR4 and Rogers RO4350B material
- Top: digital, low frequency analog (post-detector), DC power filtering
- Bottom: 18-30 GHz RF (IF) amplifier, multiplexer, and detectors with cavities for LTCC filters, MMICs, and GaAs passives

- Requires pairs of identical filters
- Accommodates arbitrary number of channels, any channel characteristics, bandwidth determined by coupler response

Simulated Multiplexer Response

- Optimized line lengths
- Coupler amplitude and phase mismatch causes reflections

8/9-Channel LTCC IF Module Layout (top)

- Modules (10 mm x 43 mm or 48 mm) contains all amplification, multiplexer filtering, and detection circuits for 8 or 9 channels
- Single 18-30 GHz input, (8) detector (DC) outputs

- Multiplexer is composed of a cascade of coupler-filter-coupler unit cells
- Full-wave simulation confirms response as expected

- Inner stripline couplers and filters built in 5 LTCC layers
- Multiplexer is divided into two "quadplexers" for additional channel isolation
- Via fences used for isolation and eliminating cavity modes

- Top of board contains digital, post-detector analog circuit, bottom is mounting platform for LTCC IF modules
- Low cost 6-layer FR4 PCB using ENEPIG finish for soldering/ wire-bonding
 - All RF circuits confined to LTCC modules, eliminating need for HF materials, PCB cavities

IFP Enclosure CAD Model

- Overall size 114 mm x 96 mm x 10 mm (~103 cm³)
- 2.92 mm ("K") connectors used for RF connections, "Micro-D" connector used for DC and data
- Aluminum enclosure with top and bottom lids allows access to both sides of PCB for post-assembly tuning (RF and IF gain adjustment)

- LTCC modules and PCB are in fabrication
 - Both expected to ship week of 10/20/2014
- Software 95% complete
 - Code finalized during IFP testing
- Final assembly and testing at MIT-LL to follow fabrication
 - Estimate 3 weeks of effort
 - Functional testing and characterization
 - Adjust IF and video gain to improve system gain flatness

- HyMAS: Motivation and Overview
- Intermediate Frequency Processor (IFP)
- Receiver Front-End Electronics
 - Airborne Instrument Accommodations
 - Current and Future Work

HyMAS System Overview

- Four F-band Receivers (108 119 GHz)
 - 9 IF Channels each
 - 22.6 GHz DRO
- Two G-band Receivers (172 183GHz)
 - 8 IF Channels each
 - 38.5 GHz DRO
- Each receiver has integrated IF amplifier with passband 18 – 29 GHz
- Four COTS F-band low noise RF amplifiers (Noise Figure < 5 dB)
- G-band low-noise amplifiers
 - Space allocated in design
 - GSFC internal development
 - SBIR development through Virginia Diodes, Inc.

F-band mixer & IF LNA F-band RF I NA

Three antennas

One at 183 GHz

Bandwidth 172-183 GHz Beamwidth: 3.1 – 3.3 degrees over the bandwidth Sidelobes: ~30 dB below main lobe VSWR: <1.5:1

Polarization: dual linear

Two at 118 GHz

Bandwidth 108-119 GHz Beam width: 3.1 – 3.3 degrees over the bandwidth Side lobes: ~25 dB below main lobe VSWR: <1.5:1 Polarization: dual linear

Gaussian optics lens antenna with wire grid to separate polarizations

HyMAS Scanhead Computer Configuration

- "Surrogate IFP" used to develop communications and electrical interfaces with HyMAS electronics
- Maximum sampling rate from IFP is ~180 data frames per second
 - 52 Radiometer channels
 - 12 Housekeeping
- Time stamp of data using network time protocol (NTP) implemented on CoSMIR – applicable to HyMAS
- GUI development components, laboratory display of real time data Scanhead computer and surrogate IFP delivered to scanhead I&T

Plot and data display functions for testing HyMAS surrogate IFP using simulated data

Photo of surrogate IFP used to test electrical compatibility of HyMAS electronics

- Custom PCB Layout
- Input 48 VDC
- Output
 - +8 V @ 2.3A
 - +3 V @ 1.1A
 - 3.3 V @ 1.9A
 - +/- 12 V (future use)
- Computer power
 5 V @ 1.75 A
- Heater power
 48 V @ 8 A

Power board is integrated and tested with receivers

- HyMAS: Motivation and Overview
- Intermediate Frequency Processor (IFP)
- Receiver Front-End Electronics
- Airborne Instrument Accommodations
 - Current and Future Work

HyMAS Scanhead Mechanical Integration

Layout facilitated by computer aided design

Partial assembly of HyMAS electronics

End-view of receivers w/ brackets to support waveguide

Antennas and receivers fit within drum envelope

HyMAS Scanhead Assembly

- Assemble receiver wiring harnesses
- I&T of data acquisition using IFP and receivers (Nov)
- Thermal testing of scanhead (Nov)
- Functional tests using scan pedestal (Dec)
- Laboratory calibration data collects (Dec)
- Final report (Jan)
- Ready for test flights in 2015

- The hyperspectral microwave receiver offers profound atmospheric sounding performance in a small package
- IFP technology offers two order of magnitude improvement in the size of the radiometer back end
 - Enables cubesat/smallsat implementation
 - Enables hyperspectral microwave operation with very large aggregate bandwidth (necessary for optimum performance)
- Complete airborne sensor ready for demonstration flights in early 2015
- Technology infusion already started (MicroMAS, MiRaTA, NAST-M, and others)