

IceCube: Spaceflight Validation of an 874-GHz Submillimeter Wave Radiometer for Cloud Ice Remote Sensing

D. L. Wu, J. Esper, N. Ehsan, T. E. Johnson, W. R. Mast, J. R. Piepmeier and P. E. Racette

NASA Goddard Space Flight Center, Greenbelt, Maryland

Earth Science Technology Forum

Leesburg, VA

Outline

- Importance of ice clouds in Earth climate and weather systems
- Limitations and gaps of current remote sensing from space
- IceCube to enable future global cloud ice measurements at submm-wave
- IceCube project development and challenges

-136.0

-119.0 -102.0

> -85.0 -68.0

-51.0 -34.0

-17.0

12.00

10.80 9.60

8.40 7.20 6.00 4.80 3.60 2.40

1.20

Importance of Ice Clouds and Their Processes

- Climate models
 - Cloud as the leading uncertain factor in predicting climate change on this water planet.
 - Too many degrees of freedom
 - Tunable parameters: cloud cover, water content, microphysics
 - Differences by 2x 10x
- Cloud-precipitation processes
 - Interactions with dynamics
 - Water vapor
 - Microphysics
 - Vertical development
 - Lifecycle and distribution

Gong and Wu (2014)

Submillimeter-Wave Radiometry for Cloud Ice Remote Sensing in the Upper Troposphere

Ice Cloud Scattering at Submm-Wave

 Higher sensitivity to cloud scattering at submm-wave

Goddard Space Flight Center

National Aeronautics and Space Administration

- Cloud-induce radiance, Tcir, proportional to cloud ice water path (CIWP)
- Cloud microphysical properties (i.e., particle size) from different frequencies
- Simultaneous retrievals with T, H₂O

Goddard Space Flight Center

NASA/GSFC Airborne Sensor:

Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR)

Evans et al. (2005)

Chn #	Freq. (GHz)	Offset (GHz)	BW(GHz)	Tsys (K)	NEDT (K)
1	183.3	1	0.5	2500	0.55
2	183.3	3	1.0	1390	0.23
3	183.3	6.6	1.5	1050	0.15
4	220	2.5	2.5	1760	0.16
5	380.2	0.8	0.7	3460	0.63
6	380.2	1.8	1.0	8440	1.23
7	380.2	3.3	1.7	4820	0.55
8	380.2	6.2	3.6	6670	0.52
9	487.25	0.8	0.35	4650	1.17
10	487.25	1.2	1.2	3890	0.85
11	487.25	3.3	2.9	4600	0.40
12	640	2.5	3.0	16000	1.33

- CRYSTAL-FACE campaign near Florida in July 2002
- Co-flight of CoSSIR and 94-GHz Cloud Radar System (CRS)
- Simultaneous retrievals of ice water path (IWP) and particle size (D_{me}) from CoSSIR
- Simultaneous retrievals of ice water content (IWC) and D_{me} from CoSSIR and CRS

CoSSIR in Tropical Composition, Cloud and Climate Coupling (TC4)

Evans et al. (2012)

- Flights on ER-2 near Costa Rica in Aug 2007
- First time to fly 874-GHz cloud radiometer (11 channels)
- Tsys=~5000 K , BW=5 GHz, NEdT=0.84 K, H-Pol
- WB-57 and DC-8 underflights of ER-2 (CoSSIR) to study cirrus anvils
- Dual-axes gimbals for programmable scan patterns.

Brightness Temperature (K)

IceCube Objectives

Climate Research Needs

Goddard Space Flight Center

National Aeronautics and Space Administration

- Accurate cloud ice measurements.
- Cost-effective, sensitive instruments for diurnal and global coverage.
- Mature technology

IceCube Objectives

- Raise overall TRL (5->7) of 874-GHz receiver technology
- Reduce instrument cost and risk by developing path-to-space for COTS submm-wave receiver systems
- Enable remote sensing of global cloud ice with advanced technologies and techniques

- Good sensitivity to small cloud ice
- Compact and mature receiver technology
- Day-night measurements

Cons

- Large attenuation from water vapor
- High power consumption

Goddard Space Flight Center

Measurement and Mission Requirements

Payload Interface Modu

GPS Patch

874 GHz

Receiver Beam

874-GHz measurement requirements:

- Accuracy < 2 K
- Precision (NEdT) < 0.25 K
- Spatial resolution < 15 km

Mission requirements:

- In-flight operation 28 days
- Periodical views of Earth (science) and space (calibration) within an orbit
- Science data 30+% (8+h /day)
- Pointing knowledge < 25 km

Validation plan:

- Lab measurement and verification
- Modeled vs observed clear-sky radiances for accuracy verification
- Space-view radiances for precision

IceCube Challenge #1: 874-GHz Radiometric Calibration

Spinning CubeSat: In-Flight Calibration

$$TB = TB_1 + G_1(T)G_2(t)^*(C - C_1)$$

Key assumptions:

Linear TB-count relationship
 C₁ constant during Earth view
 G₁(T) same as measured in lab

Note: #2 needs to be valid only within a spin cycle (2.25 minutes)

Adv. with spinning S/C:

 Accurate gain monitoring
 Attitude control stability
 No moving parts needed for instrument

Goddard Space Flight Center

Mar

Feb

Jan

IceCube Challenge #2: Large Orbital Thermal Variations

-5

-10

Oct

Nov

Dec

UTC month starting Sep 2012

Constraints:

- Preferred instrument operation temperatures: 20C-30C
- Low CubeSat/instrument mass, or thermal inertia, for thermal stability
- Wide range of beta angles:
 -75° to 75°
- Day-on and night-off operation
- Spin around the Sunpointing axis

Goddard Space Flight Center

IceCube Flight Configuration

Courtesy of John Hudeck

Launch Opportunity and Orbit

 NASA CubeSat Launch Initiative (CSLI)

National Aeronautics and Space Administration

- Coordination of upcoming launches
- 1U, 2U, 3U, or 6U

Goddard Space Flight Center

- International Space Station (ISS)
 - Secondary cargo payload on ISS resupply missions
 - Mid 2016
 - 350-450 km, 51.6° inclination nearcircular orbit
 - β angle variation: 0-75°
- 3U CubeSat Launchers
 - NanoRacks CubeSat Deployer from ISS
 - Small-Sat Orbital Deployer (J-SSOD) from ISS/JEM
 - NASA NEXT

WFF UHF Ground-station Contacts

Project Schedule

Project Challenges and Pathways

- Not traditional kind of NASA missions
 - Limited resources and tight schedule
 - Short, quick path to space for science exploration
- Risk management

National Aeronautics and Space Administration

Goddard Space Flight Center

- Take risks and spread them evenly
- Mitigate risks associated with CubeSat and instrument thermal environments

19

- NASA ESTO, SMD and CSLI supports
- IceCube Team

ΡI

Deputy-PI Tech Lead Mission Sys Engr. Mgt. Support

Instrument (Greenbelt, MD)

Inst. Scientist Inst. Lead Antenna Engr. Integration IF subassembly Power Power Mechanical Engr. Parts Support DSP Engr. Inst Video Amp/RIC RF Engr. Racette, Paul Ehsan, Negar Du Toit, Neils Horgan, Kevin Lucey, Jared Pellerano, Armi Ortiz-Acosta, Melyane Solly, Michael Fetter, Lula (Lu) Wong, Mark (Englin) Lu, Daniel Hersey, Ken

Wu, Dong (GSFC) Piepmeier, Jeffrey (GSFC) Esper, Jaime (GSFC) Mast, William (WFF) Johnson, Tom (WFF)

CubeSat, Ground System, Op (WFF, VA)

Power Systems Power Systems Software/Avionics Software/Avionics Mechanical/Thermal Mechanical/Thermal GN&C Purdy, Christopher Corbin, Brian Daisey, Ted Lewis, Christopher Hudeck, John Smith, Sally Heatwole, Scott

874-GHz Receiver (Virginia Diode, Inc)

Tech POC LO Drive Module Design Integration and Testing CAD and Mechanical Hesler, Jeff Bryerton, Eric Retzloff, Steven Neff, Chuck

Goddard Space Flight Center

Backup Slides

Examples CoSSIR in TC4

CoSSIR Nadir T_b (July 17, 2007)

IceCube Operation

