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1.  INTRODUCTION"

Overall Goal 
•  To develop a robust classifier framework that can be applied in a multi-

sensor environment using an Active Learning strategy to select 
samples for labeling. 

Motivation for Research 
•  Hyperspectral and multi-sensor data require large quantities of labeled 

data (which are difficult and expensive to collect) to train supervised 
classifiers, motivating “intelligent” use of unlabeled samples. 

•  Large scale data remote sensing data sets exhibit variable 
characteristics over space and time, motivating development of 
adaptive classifiers. 

•  Traditional labeled training sets typically contain redundant samples, 
motivating use of Active Learning to select the best subsets. 

•  Optimal exploitation of multi-source data continues to be an open 
problem. 

"
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OBJECTIVES"

•  Overall Objective: Develop a multi-source active learning framework for geospatial 
data analysis. Case studies to include spatial-spectral feature extraction and analysis 
from hyperspectral imagery, as well as multi-sensor active learning – utilizing 
hyperspectral imagery and LiDAR data.  

AL at the pixel level, or at the  
HSEG object level 
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2. Methodology"
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MULTI SOURCE ACTIVE LEARNING"

•  Introduction to Active Learning 

•  Proposed multi-kernel learning active learning (MKL-AL) 
method for multi-source image classification 
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BACKGROUND: ACTIVE LEARNING (AL)"

•  AL selects samples from the unlabeled data pool in a biased 
manner via query strategies that are designed to exploit 
properties of the classifier and the current labeled and auxiliary 
unlabeled data. 

•  Goal of AL: Obtain satisfactory classification performance with 
fewer labeled samples than those of conventional passive 
learning, where the training set is often selected randomly or 
manually without interaction with the classifier. 
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MULTI-KERNEL LEARNING (MKL) 
FOR MULTI-SOURCE IMAGE ANALYSIS"

•  Traditional SVM classifiers employ single-kernel models 

– Tuning is performed to obtain “optimal” kernel parameters via cross-
validation. 

• Multi-Kernel Learning (MKL) is based on a linear mixture of kernels 

– MKL can implicitly adapt the kernel to the data by learning appropriate 
weights of pre-determined kernels, eliminating the need to re-tune SVMs 
at each AL induction step. 

– Kernel alignment can further be employed to determine a good bank of 
kernels. 

– MKL is being investigated  in single and ensemble classification 
frameworks for multi-source data analysis."
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FLOW CHART: MKL-AL ALGORITHM"
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ENSEMBLE MKL-AL"

Hard fusion (labels) 
Soft fusion (probabilities) 
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HIERARCHICAL SEGMENTATION (HSEG)"

HSeg Background: 

•  HSeg performs image segmentation through a form of best merge 
region growing. 

•  Algorithm based on the basic hierarchical step-wise optimization 
approach (HSWO) described in: J.-M. Beaulieu and M. Goldberg, 
“Hierarchy in picture segmentation: A stepwise optimal approach,” 
IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 2, pp. 150-163, 
Feb. 1989. 

•  HSWO finds individual closed-connected region objects. 

"
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HIERARCHICAL SEGMENTATION (HSEG)"

HSeg Background (cont’d): 

•  HSeg modifies HSWO by also aggregating spectrally similar but 
spatially separated region objects into groups of region objects – 
called region classes. The HSeg Flowchart: 

•  Swght, ranging from 0 to 1, controls the relative importance of merges 
between adjacent regions versus non-adjacent regions. 

"

"
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HIERARCHICAL SEGMENTATION (HSEG)"

HSeg Background (cont’d): 

•  The RHSeg approximation of HSeg has an efficient parallel implementation useful for 
processing large images: 

•  Lr is determined as the number of times the input image must be subdivided to achieve 
a small enough image size for efficient processing with HSeg. 

•  The rhseg(L,X) function: 

•  Nmin is equal to ¼ the number of pixels in the subimage processed at the deepest level 
of recursion. 

"
"
"
"
"

"
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HIERARCHICAL SEGMENTATION (HSEG)"

HSeg Background (cont’d): 
Both HSWO and HSeg produce a hierarchical set of image 
segmentations that: 

1.  Consist of segmentations at different levels of detail, in which 
2.  The coarser segmentations can be produced from merges of 

regions from the finer segmentations, and 
3.  The region boundaries are maintained at the full image spatial 

resolution 
The HSeg algorithm is fully described in: 

J. C. Tilton, Y. Tarabalka, P. M. Montesano and E. G., “Best Merge 
Region Growing Segmentation with Integrated Non-Adjacent Region 
Object Aggregation,” IEEE Transactions on Geoscience and Remote 
Sensing, vol. 50, no. 11, pp. 4454-4467, Nov. 2012. 

Ø  This is version 1.59 of HSeg/RHSeg. 
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PROBLEM NOTED WITH HSEG/RHSEG VERSION 1.59"

Problem: "
Large homogeneous regions with gradual gradients aren’t readily 
formed. 
 
Observation:"
The boundaries between HSeg (or HSWO) subregions of large 
homogeneous regions do not correspond to any visibly apparent 
boundary – There is no “edge” between these subregions. 
 
Idea:"
Can edge information be utilized to influence the HSWO/HSeg region 
growing process to encourage the merging together of large 
homogeneous regions with gradual gradients? 
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FREI-CHEN DIFFERENCE OPERATOR"
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INCORPORATION OF EDGE INFORMATION INTO HSEG"

•  Edge information is incorporated at three different stages: 

1.  An initialization stage in which the edge information directs a fast first-
merge region growing process to quickly merge connected areas with 
edge values <= edge_threshold (set by user), and 

2.  The normal HSWO/HSeg best merge region growing stage in 
which the edge information influences the best merge decisions."

3.  In performing processing window artifact elimination in RHSeg: 
merge pairs of regions across the processing window seams that 
have low edge values along the seams."

"
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INCORPORATION OF EDGE INFORMATION INTO HSEG"

A number of approaches were investigated for having the edge 
information influence the best merge decisions in the HSWO/HSeg best 
merge region growing stage. A simple extension of HSeg was found to 
be quite effective: 

HSeg version 1.61: Add to the original HSeg one region feature value, Emax, 
the maximum value of Evalue for all pixels in the region. The edge dissimilarity 
value, Edissim, is assigned as the maximum of Emax for the two regions being 
compared. 

Normalize the value of Edissim to range from 0.0 to 1.0, by computing  
"
​𝐸↓𝑑𝑖𝑠𝑠𝑖𝑚↑′ = ​(​𝐸↓𝑑𝑖𝑠𝑠𝑖𝑚 − ​​min┬𝐼  ⁠[​𝐸↓𝑣𝑎𝑙𝑢𝑒 ] )∕(​​max┬𝐼  ⁠[​
𝐸↓𝑣𝑎𝑙𝑢𝑒 ]− ​​min┬𝐼  ⁠[​𝐸↓𝑣𝑎𝑙𝑢𝑒 ]  ) "
"
where ​​min┬𝐼  ⁠[​𝐸↓𝑣𝑎𝑙𝑢𝑒 ]  is the minimum value of Evalue over the 
entire image, I, and ​​max┬𝐼  ⁠[​𝐸↓𝑣𝑎𝑙𝑢𝑒 ]   is the maximum value of 
Evalue over the entire image.  
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INCORPORATION OF EDGE INFORMATION INTO HSEG"

Compute an edge factor, Ef, as follows: 
"

Ef = (Swght + (1.0 - Swght)((1.0 – Ew) + ​𝐸↓𝑑𝑖𝑠𝑠𝑖𝑚↑′ Ew))/Swght"
"
where Ew as a user settable parameter that controls the weighting of 
the edge feature (ranging from 0.0 to 1.0), and Swght is the HSeg 
“spectral clustering weight.” 
 
The combined region dissimilarity is the computed as Cdissim = Rdissim*Ef, 
where Rdissim is the dissimilarity between the region pair for the original 
version of HSeg. 
 
Thus, an adjacent region is treated as a non-adjacent region for ​
𝐸↓𝑑𝑖𝑠𝑠𝑖𝑚↑′  = 1.0, and treated normally as an adjacent region for ​
𝐸↓𝑑𝑖𝑠𝑠𝑖𝑚↑′  = 0.0, with gradations in-between for 0.0 < ​𝐸↓𝑑𝑖𝑠𝑠𝑖𝑚↑′  
< 1.0. 
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INCORPORATION OF EDGE INFORMATION INTO HSEG"

•  Frei-Chen edge difference operator result: 
 
 

Ikonos data, 768x768 pixels, 
Patterson Park/Inner Harbor area of Baltimore, 
MD. 

Frei-Chen edge difference operator result, 
maximum over spectral bands, 
thresholded at 0.07. 
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INCORPORATION OF EDGE INFORMATION INTO HSEG"

•  HSeg v. 1.59 result: 
 
 

Ikonos data, 768x768 pixels, 
Patterson Park/Inner Harbor area of Baltimore, 
MD. 

HSeg v. 1.59 result, 
at global dissimilarity 0.371, 
155 region classes and 9871 region objects. 
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INCORPORATION OF EDGE INFORMATION INTO HSEG"

•  HSeg v. 1.61 result – edge initialization only: 
 
 

Ikonos data, 768x768 pixels, 
Patterson Park/Inner Harbor area of Baltimore, 
MD. 

HSeg v. 1.61 result, Et=0.05 and Ew=0.0, 
at global dissimilarity 0.371, 
192 region classes and 9954 region objects. 
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INCORPORATION OF EDGE INFORMATION INTO HSEG"

•  HSeg v. 1.61 result – Ew=1.0: 
 
 

Ikonos data, 768x768 pixels, 
Patterson Park/Inner Harbor area of Baltimore, 
MD. 

HSeg v. 1.61 result, Et=0.05 and Ew=1.0, 
at global dissimilarity 0.371, 
15 region classes and 14513 region objects. 
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"
•  Dataset 1: University of Houston, urban area mapping 

•  Dataset 2: Corpus Christi, seagrass mapping 

"

3. Testbed Datasets"
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MULTI-SENSOR TESTBED DATASET 1:  
UNIVERSITY OF HOUSTON"

•  UH-NCALM Multi-sensor data were processed and provided for 
analysis by algorithms developed in this research 

-  Hyperspectral data: acquired by ITRES CASI sensor – Vis-VNIR 
-  Samples/Lines/Bands: 349/1905/144. 

-  LiDAR DSM (standard product extracted from point cloud). 
-  LiDAR pseudo-waveform (extracted from point cloud) 

-  Samples/Lines/Bands: 349/1905/80. 
-  Provides a challenging classification scenario, including clouds in the 

image. 
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Hyperspectral: True Color Image 

LiDAR Pseudo-Waveform: RGB Composite (Red: 20m, Green: 10m, Blue:  15m) 

MULTI-SENSOR TESTBED DATASET 1:  
UNIVERSITY OF HOUSTON"
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LiDAR DSM 

Ground Reference Map 

MULTI-SENSOR TESTBED DATASET 1:  
UNIVERSITY OF HOUSTON"
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MULTI-SENSOR TESTBED DATASET 2:  
CORPUS CHRISTI, SEAGRASS MAPPING"

•  Extent of seagrass habitat is an important indicator of ecosystem 
health in coastal environments 

-  Seagrass beds are often negatively impacted by human activity such 
as shipping and dredging 

-  Significant effort has recently been focused on reintroduction of 
seagrasses, resulting in the need to monitor recovery 

•  Monitoring seagrass via remote sensing 
-  Hyperspectral data provide capability for mapping submerged 

vegetation in shallow environments with good clarity 
-  Bathymetric LiDAR data provide relevant information on topography 

and possibly on submerged vegetation 

•  Objective: Classification of multi-sensor airborne data over coastal 
seagrass beds. 
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Study area 

•  Redfish Bay, Texas 
•  Coordinates:  27°54'47.01"N 

 97°6'25.73"W 

•  Data acquisition: 
Hyperspectral image and LiDAR 
point cloud data collected by 
NCALM on September, 2012. 

MULTI-SENSOR TESTBED DATASET 2:  
CORPUS CHRISTI, SEAGRASS MAPPING"

Corpus Christi Bay 

Redfish Bay 
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MULTI-SENSOR TESTBED DATASET 2:  
CORPUS CHRISTI, SEAGRASS MAPPING"

•  Number of ground reference points extremely limited 
•  Ground reference information extended via spatial-spectral 

segmentation: 
-  Hyperspectral data were spatially/spectrally clustered using HSEG 
-  Photo-interpretation using very high resolution (5 cm) color images 

employed to remove incorrectly labeled pixels 

Extended ground 
reference after HSEG 

     Legend: 
Thalassia: 45,424 
Drift Algae: 11,800 
Halodule: 11,012 
Syringodium: 11,504 
Water: 37,640 
Undefined 

Extended ground 
reference after screening 
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EXTRACTION OF FEATURES FROM REMOTE SENSING DATA"

•  Features from LiDAR data 

–  Digital elevation maps and related features 

–  Pseudo-waveforms from discrete return LiDAR data 

–  Full-waveform signatures 

•  Spatial features 

–  Object-based texture 

–  Morphological features 
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SPATIAL FEATURES : OBJECT-BASED TEXTURE"

•  Object-based feature extraction departs from traditional window-based 
approach extracting features from potentially irregular spatial regions. 

Multiple 
pruning"

Multiple 
pruning"
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(a)                              (b)                              (c) 

Pruning level map 

SPATIAL FEATURES : OBJECT-BASED TEXTURE"
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SPATIAL FEATURES : MORPHOLOGICAL FEATURES 
	


•  Morphological attribute filters process images by removing connected 
components that do not fulfill a given criterion. 

 
•  Morphological features are extracted from “thickened” and “thinned” 

variants of images (akin to erosion/dilation). 
 
•  Morphological attribute profiles (APs) consist of n morphological 

attribute thickening      and n attribute thinning operators      as given by 

 where     is the input image. 
 
•  Attributes can be geometric (e.g. area, shape, length of the perimeter, 

image moments), textural (e.g. range, standard deviation), etc. 

	


Tφ Tγ

1 1( ) { ( ),..., ( ), , ( ),..., ( )}T T T T
n nAP f f f f f fφ φ γ γ=

f
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MORPHOLOGICAL FEATURES: EXTENDED MULTI ATTRIBUTE PROFILES (EMAPS)	


Thickening image	
 Thinning image	
Tφ Tγ

Input image  
(PC)	


AP1: 
Area	


AP2:  
Length of the 

diagonal	


AP3:  
Moment 
of inertia	


Different scale	
 4φ 1φ 1γ 4γ
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EXPERIMENTAL RESULTS"

•  Ensemble MKL-AL method 

–  UH multi-source dataset 

–  CC multi-source dataset 
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VALIDATION RESULTS WITH UH DATA:  
ENSEMBLE MKL-AL	


•  Multiple feature extraction 
-  Original hyperspectral and LiDAR pseudo-waveform 
-  Object-based texture features 
-  Extended multi attribute profiles (EMAPs)	
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VALIDATION RESULTS WITH UH DATA:  
CLASSIFICATION MAPS	


SimpleMKL-AL 
 2 sources	


Ensemble MKL-AL 
2 sources	


SimpleMKL-AL 
6 sources	


Ensemble MKL-AL 
 6 sources	
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VALIDATION RESULTS WITH CC DATA:  
SINGLE SOURCE (HSI AND PW)	
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VALIDATION RESULTS WITH CC DATA:  
MULTIPLE SOURCE (HSI + PW)	
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VALIDATION RESULTS WITH CC DATA:  
CLASS-SPECIFIC ACCURACIES AND SELECTED SAMPLES	
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VALIDATION RESULTS WITH CC DATA:  
CLASSIFICATION MAPS	


SimpleMKL-RS	
 SimpleMKL-MS	
 EnsembleMKL-MD-LOP	
 Ground Reference Map	


Thalassia	
 Drift Algae	
 Halodule	
 Syringodium	
  Water	


Data fusion of PW and HSI	
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"
•  Full integration with the HSeg algorithm for texture feature 

extraction 
– Incorporating HSeg into the query step of the proposed AL 
framework. 

•  Extension to other multi-sensor datasets 

4. ONGOING AND FUTURE WORK"
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HSEG AND AL INTEGRATION FRAMEWORK"

1.  Method 1:  Adding Features   
2.  Method 2:  Regularization 
3.  Method 3:  Adding Samples 
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HSEG AND AL INTEGRATION FRAMEWORK:  
PROPOSED METHODS 

•  Method 1: Adding Features 
–  Spatial features (mean and std.) extracted from HSeg are added 

to the original spectral features. Then, both spectral and spatial 
features are used to do the classification. 

•  Method 2: Regularization 
–  Only the spectral features are used to do the classification, and 

then the HSeg-based classification map is used to refine the 
classification results. 

•  Method 3: Adding Samples 
–  Spatial information is used to extend the training set by using a 

semi-supervised approach. We add both labeled and unlabeled 
samples into the training set during each iteration. The labeled 
samples are selected by using the breaking ties (BT) criterion. 
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SUMMARY	


•  MKL-AL is highly effective in single and multi-source scenarios  
–  Adapts the kernel to the dataset at hand. 

•  Ensemble-MKL-AL results in substantial improvements 
–  Multi-view active learning and decision level fusion results in induction of 

highly informative samples, and results in superior classification 
performance, particularly in multi-source scenarios. 

•  Multiple views can be generated by different sensors, different feature-
types, spectral subsets, and other approaches that result in diverse 
views of the same scene. 

•  HSEG is instrumental, not only in object level feature extraction, but 
also for object-based active learning 
–  Object level feature extraction has been implemented and validated. We 

are currently developing object level active learning. 
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ACRONYMS"

"
AL" "Active Learning"
EMAPs "Extended multi attribute profiles"
HSWO "Hierarchical Step-Wise Optimization"
HSeg "Hierarchical Segmentation"
LOP "Linear Opinion Pool"
MD" "Maximum Disagreement"
MKL "Multi Kernel Learning"
MS" "Margin Sampling"
MV "Majority Voting"
RS" "Random Sampling"
RHSeg "Recursive Hierarchical Segmentation"
SVMs "Support Vector Machines"


