

NASA Earth Observing System Simulator Suite (v 2.0)

https://**NEOS3**.jpl.nasa.gov (NEE-os)

N. Niamsuwan¹, S. Tanelli¹ (PI), M. P. Johnson¹, D. Dao¹, J. Jacob¹, S. Jaruwatanadilok¹, S. Oveisgharan¹, M. Simard¹, F. J. Turk¹, N. Majurec¹, and L. Tsang²

¹Jet Propulsion Laboratory, California Institute of Technology ²University of Washington

> Earth Science Technology Forum Oct 29, 2014

> > © 2014. All rights reserved.

<u>NASA Earth Observing System</u> <u>Simulator Suite (v 2.0)</u>

© 2014. All rights reserved.

Introduction: What is NEOS³?

 Produce simulated satellite observables based on given a 3D field of geophysical description of the Earth's atmosphere and surface as provided by weather and climate models

Physical Properties of the Target (at all 3D grid-points in a domain)

[Tropical Cyclone Information System, S. Hristova-Veleva]

Motivation: Role of NEOS³

Image credit: <u>http://gpm-gv.gsfc.nasa.gov/img/GPM_constellation.png</u>

Chronicle of NEOS³

• 2009—2012 (AIST'08)

Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS)

S. Tanelli	PI			
W. Tao	Atmospheric Modeling			
T. Matsui	SDSU			
C. Hostetler				
J. Hair	Lidar, HSRL			
C. Butler				
N. Niamsuwan	Architecture and Interface			
M. P. Johnson	Processor and IO			
J. C. Jacob	High Performance Computing			
J. Kwan	System Administrator			
KS. Kuo	DDSCAT database			

Additional contributors: , O. Sy¹, T. Clune², A. Battaglia⁵, D. J. Diner¹, D. Donovan⁶, S. L. Durden¹, A. J. Heymsfield⁷, T. L'Ecuyer⁸, T. Nakajima⁹, G. L. Stephens¹, A. Ackermann¹⁰, R. Bennartz¹¹, K. Bowman¹, A. B. Davis¹, G. DeBoer¹², A. Fridlind¹⁰, S. Ghan¹³, T. Hashino¹⁴, J. T. Johnson¹, O. V. Kalashnikova¹, S. Kneifel¹⁶, P. Kollias¹⁷, S. Kreidenweis⁸, S. Krueger¹⁸, M. Kulie¹¹, S. Kumar², L. Liao², G. Liu¹⁹, N. Majurec¹⁵, J. V. Martonchik¹, D. Mueller²⁰, A. Parodi²¹, W. Szyrmer¹⁷, A. Tatarevic¹⁷, G. Tripoli¹¹, J. Turk¹, G.-J. Van Zadelhoff⁶, F. Weng²²

• 2012—present (AIST'11)

Unified Simulator for Earth Remote Sensing (USERS)

D. Dao Cloud Computing	
S. Jaruwatanadilok Sea Ice Scattering Mod	el
S. Oveisgharan Snow Scattering Model	
M. Simard Forest Scattering Mode	
J. Turk Land Scattering Model	
L. Tsang Vegetation Scattering M	lodel
N. Majurec Ocean Scattering Mode	el

Additional contributors: W. Chang²³, T.-H. Liao²³, G.-F. Sacco¹, J. Parker¹, Q. Chau¹

1 - JPL; 2 – NASA/Goddard Space Flight Center; 3 – NASA/Langley Research Center; 4 - Caelum Research Corporation, Rockville, MD, USA;

5 – Univ. of Leicester, Leicester, UK; 6 - Royal Netherlands Meteorological Institute, De Bilt, Netherlands; 7 - National Center for Atmospheric Research; 8 – Colorado State Univ.; 9 – Tokay Univ., Tokyo, Japan; 10 – NASA/Goddard Institute for Space Studies; 11 – Univ. of Wisconsin; 12 – Laurence Berkley National Laboratory; 13 – Pacific Northwest National Laboratory; 14 – Univ. of Tokyo, Tokyo, Japan; 15 – Ohio State University; 16 - Institute for Geophysics and Meteorology, Univ. of Cologne, Germany; 17 – McGill University, Montreal, CA; 18 – Univ. of Utah. Salt Lake City, UT, USA; 19 – FSU, Tallahassee, FL; 20 - Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea and Leibniz Institute for Tropospheric Research, Leipzig, Germany; 21 – CIMA Research Foundation, Savona, Italy; 22 - NOAA/STAR; 23 – U. of Washington

Chronicle of NEOS³

version 1.0

• 2009—2012 (AIST'08)

Instrument Simulator Suite for <u>Atmospheric Remote Sensing</u> (ISSARS)

S. Tanelli	PI			
W. Tao	Atmospheric Modeling			
T. Matsui	SDSU			
C. Hostetler				
J. Hair	Lidar, HSRL			
C. Butler				
N. Niamsuwan	Architecture and Interface			
M. P. Johnson	Processor and IO			
J. C. Jacob	High Performance Computing			
J. Kwan	System Administrator			
KS. Kuo	DDSCAT database			

Additional contributors: , O. Sy¹, T. Clune², A. Battaglia⁵, D. J. Diner¹, D. Donovan⁶, S. L. Durden¹, A. J. Heymsfield⁷, T. L'Ecuyer⁸, T. Nakajima⁹, G. L. Stephens¹, A. Ackermann¹⁰, R. Bennartz¹¹, K. Bowman¹, A. B. Davis¹, G. DeBoer¹², A. Fridlind¹⁰, S. Ghan¹³, T. Hashino¹⁴, J. T. Johnson¹, O. V. Kalashnikova¹, S. Kneifel¹⁶, P. Kollias¹⁷, S. Kreidenweis⁸, S. Krueger¹⁸, M. Kulie¹¹, S. Kumar², L. Liao², G. Liu¹⁹, N. Majurec¹⁵, J. V. Martonchik¹, D. Mueller²⁰, A. Parodi²¹, W. Szyrmer¹⁷, A. Tatarevic¹⁷, G. Tripoli¹¹, J. Turk¹, G.-J. Van Zadelhoff⁶, F. Weng²²

 2012—present (AIST'11) Unified Simulator for <u>Earth Remote Sensing</u> (USERS)

	D. Dao	Cloud Computing
++	S. Jaruwatanadilok	Sea Ice Scattering Model
	S. Oveisgharan	Snow Scattering Model
M. Simard J. Turk		Forest Scattering Model
		Land Scattering Model
	L. Tsang	Vegetation Scattering Model
	N. Majurec	Ocean Scattering Model

Additional contributors: W. Chang²³, T.-H. Liao²³, G.-F. Sacco¹, J. Parker¹, Q. Chau¹

1 - JPL; 2 – NASA/Goddard Space Flight Center; 3 – NASA/Langley Research Center; 4 - Caelum Research Corporation, Rockville, MD, USA;

5 – Univ. of Leicester, Leicester, UK; 6 - Royal Netherlands Meteorological Institute, De Bilt, Netherlands; 7 - National Center for Atmospheric Research; 8 – Colorado State Univ.; 9 – Tokay Univ., Tokyo, Japan; 10 – NASA/Goddard Institute for Space Studies; 11 – Univ. of Wisconsin; 12 – Laurence Berkley National Laboratory; 13 – Pacific Northwest National Laboratory; 14 – Univ. of Tokyo, Tokyo, Japan; 15 – Ohio State University; 16 - Institute for Geophysics and Meteorology, Univ. of Cologne, Germany; 17 – McGill University, Montreal, CA; 18 – Univ. of Utah. Salt Lake City, UT, USA; 19 – FSU, Tallahassee, FL; 20 - Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea and Leibniz Institute for Tropospheric Research, Leipzig, Germany; 21 – CIMA Research Foundation, Savona, Italy; 22 - NOAA/STAR; 23 – U. of Washington

- Overview: demo, input, output
- Sample Applications
- Features
- Architecture
- Collaboration

Demo

 This video shows how to create a new simulation "job"; (set up parameters); start a simulation "run"; and view/download the output

Overview ■□□	Applications	Features	Architecture	Collaboration	Summary

Starting a Default Simulation

NASA

Creating a New Job

NEOS	3 NASAE	ART	H OBSERV	ING SYSTEM SIMUL	ато	R SUITE	
@ New	Files LUTs	Loş	g out				
Job History fo	or demo						
ID = e	Name	Å	Modified	Stage	Å	Started	Search:
				No matching records found			
Showing 0 to 0 of 0) entries		New Job		×		
			CloudSAT/ACE/GPM CloudSAT/GPM DMSP-F16 TRMM DMSP-F17 [AMSR2] CubeSAT [GeoStorm-52] [GeoStorm-118]	Tropical Rainfall Measuring Mission (TRMM) Two radar channels + six radiometer channels *Recommended for a starter.* Create Close			

Overview □□□	Applications	Features		Architecture	Collaboration	Summary
NASA		Job	Report			
		B: IRM Report × tps://neos3.jpl.nasa.gov/neos3v1/report/187/			☆	
		Jet Propulsion Laboratory California Institute of Technology	JPL HOME EARTH SOLAR SYSTEM ST BRING THE UNIVERSE TO YOU: JP	ARS & GALAXIES SCIENCE & TECHNI PL Email News I RSS I Podcast I	OLOGY Video larch	
		Home Tutorials Gallery Downloads	About Contacts	Suite		
	3.44	Load log messages Refresh Back				
		Status				
		0s Done pre 1s Done IRM Quicklook 2s Done SEAM Quicklook 3s Done ISM Quicklook [NEOS3 Standard Output] 10650000000 106500	00000 19350000000 21300000000			
	No. Sec.	Log Messages				
		Preprocess IRM SEAM				
		► ISM				
		· · · · · · · · · · · · · · · · · · ·		weomaster: Noppasin Niam	suven	
					· ·	
	NEOS3_187				Show All	

12

NEOS³ — Noppasin Niamsuwan — ESTF 2014

3D Geophysics Description of the Atmosphere

Regional CRM (Cloud Resolving Model)

- NASA-Unified WRF (Weather Research & Forecasting)
- NCAR's Advanced Research WRF
- WRF-Chem (WRF with chemistry coupling)
- HWRF (Hurricane WRF)
- RAMS (Regional Atmospheric Modeling System)

GCM (Global Circulation Model)

- GFS (Global Forecast System)
- ECMWF (European Center for Medium range Weather Forecasting)

New entries (integration is in progress)

- NICAM Global cloud resolving model
- JPL LES
- Additional 2D Geophysics Description of the Surface
 - LIS (Land Information System)

Collaboration

Total Precipitation, 18-hr WRF forecast

(Oct 20, 2014)

Summary

Output

Simulated observation for active and passive instruments

- Microwave radiometers and doppler radars (mature)
- Lidars, including hyper-spectral resolution (validation in progress)
- Polarimeters (development in progress)

Multiple degrees of realism

- **Ideal** quantities from radiative transfer
- Observations affected by <u>real</u>istic limitations of actual instruments (e.g. sampling time, thermal noise)

Format

- Standard NEOS³ binary: Python and MATLAB readers for internal use
- NetCDF4 (HDF5) for external use
 - Self explanatory: name, value, unit, dimension
 - MATLAB (built-in), Python (h5py), Fortran/C/Java (officially supported)
 - NEOS3-Complete, NEOS3-Compact, and some custom contents

ESTO

Sample Applications

- Model evaluation **Tropical Cyclone Information System**
- **Trade Studies** CubeSat and ACE
- **Analysis via IDE** (Integrated Development Environment) **Collaborative Workbench**

[http://hs3.jpl.nasa.gov]

[[]Courtesy: L. Wu, S. Padmanabhan, and H. Su; JPL

[S. Hristova-Veleva, P. Li, B. Knosp, Q. Vu; JPL]

- Adjust simplifying model assumptions and evaluate its impact (NEOS³ ensures the assumptions are consistent throughout the simulation)
- "Heavy" use of <u>web service</u> capability (manage simulation without web interface)
- Submit a request for simulations (~100s jobs of a few hours each), polling for the status, transfer the output when ready
- Constant demand for NEOS³ to be optimized for speed

Summary

ESTO

2. OSSE for CubeSat

- Evaluate potential impact of CubeSat sounders on extreme weather forecasts
- NEOS³ serves as a forward simulator producing an "ideal" synthetic observations with and without CubeSat
- Forward simulator in the GSI (Gridpoint Statistical Interpolation) data assimilation system is much cruder, generally uses different and more approximated sets of assumptions)

- Currently used by ACE and CaPPM* definition working groups to define mission requirements
- One example of ongoing trade studies is shown below (courtesy T. L'Ecuyer and E. Nelson, U. of Wisc)
 - What Doppler radar characteristics are sufficient to observe the atmospheric phenomena of interest to the minimum accuracy required to address science questions?
 - How much information is gained by improving these characteristics beyond the sufficient level?
- NEOS³ provides the necessary and consistent framework to translate model simulations to satellite observations with prescribed instrument configurations
- Synthetic algorithmic retrievals and information content analyses can then be performed to answer our questions.

ESTO

*Cloud and Precipitation Processes Mission

NEOS³ — Noppasin Niamsuwan — ESTF 2014

3-Stage Processing

- Simulation is completed in 3 stages
- Parameters are also grouped into 3 categories
- Possible to repeat only later stage(s) of simulation where the parameters have been updated

Sample Output of Each Stage

- **IRM** reads the quantities of each type of particle from the file and splits them 1. into subtypes (shown are 3 different snow crystal shapes)
- 2. **SEAM** applies scattering models to each grid points in the atmosphere and surface
- 3. **ISM** then solves the radiative transfer problem and produces the final product

ESTO

Editing Parameters

• Parameters are organized in a tree structure

NEOS ³ NASA E	ARTH OBSEF	IVING SYSTE	EM SIMU	LATOR S	UITE	
🕒 Copy 📋 Paste 💶 Clone 🍵 D	elete 🔎 QuickLook	Geophysics Editor	Chemistry Edito	r Save Sa	ve a Copy Back	
Job Name: [TRMM] TMI Atmospheric assumptions > Cloud microphysics	Job ID: TMI	- 10.6 e Habit > Particle descriptio	n > Mass > Powe	rlaw		
Geophysics Electromagnetics Instrume	nts and orbit Simulation		Pi	Name A	Value	Unit
Customized Customized Multi Habit Single Habit Single Habit Customized Subkind ID Canting angle Cross-sectional area	<u>Mass</u> of <u>Snow</u> pa described by a <u>P</u> wit	articles is <u>Power Law</u> :h these <u>parameters</u>	α ₀ β1 D,	nin nax	6.4E-2.4 2.6 0.2 0.6 . Upda	nm um ✓ mm cm
È·· ▼ Mass ···· Oblate raindrop □·· ● Power law ···· ■ α ₀ ··· ■ β ₁			H U D	blp $m(D) = lpha$ lse a power law to des m_{\max} are optional. If spe	$_{0}D^{eta_{1}}, D_{min} \leq D \leq$ cribe mass-diameter relations	$\leq D_{max}$ ship. D _{min} and side the range will

Features

Architecture Collaboration

Summary

ESTO

Atmosphere

- Selectable models (Speed vs. Accuracy)
- Pre-made lookup tables for scattering properties (Speed w/o scarifying accuracy)

Gases

- **MPM** for Microwave
- HITRAN for UV/IR: w/ clustering algorithm to reduce redundant calls

ISSARS HITRAN Query Filters:

molecule = 2 isotope = 1 4870.0 <= trans_wavenum <= 4880.0 line_intensity >= 1e-26

Matching HITRAN 2008 absorption lines:

Show 10 🔷 entries

	Molecule 🔺 Number	Isotope Number	Transition Wavenumber (cm- 🏻 🌲 1)	Line Intensity	Einstein A-	Air- Broadened Width	Self- Broadened Width	Lo Sta En
Γ	2	1	4870.23	4.623e-26	1.462e-05	0.0727	0.096	19
	2	1	4870.44	2.416e-22	0.06993	0.072	0.098	19
	2	1	4870.63	1.772e-26	0.1364	0.0696	0.071	24
	2	1	4871.35	1.241e-26	0.1381	0.0692	0.069	25
	2	1	4871.79	2.214e-22	0.07062	0.071	0.095	23
L	0	4	4074 00	0.040 - 00	0.007~ 00	0.0740	0.000	4.0

Features

Surface

Surface Properties are imported from

- The atmospheric models themselves
- The Land Information System
- Empirical Databases

Snow water content at 750 mbar altitude

Radiative Transfer

(Currently integrated models)

Time independent (for passive instruments)

- SOI: Successive Order of Interaction (A. Heidinger, C. O'Dell, R. Bennartz, and T. Greenwald; U. of Wisconsin)
- **SHDOM**: Spherical Harmonic Discrete Ordinate Method (R. Pincus and K. F. Evans; NOAA/ U. of Colorado)
- **SOS**: Successive Order of Scattering (Pengwang Zhai; NASA Langley)
- **MC3D**: Monte Carlo 3D Radiative Transfer (A. Battaglia, U. of Leicester)

Time dependent (for active instruments)

- **DS3**: Doppler Simulator 3D (S. Tanelli, et al.; JPL)
- **DOMUS2**: Monte Carlo Polarimetric Doppler Radar Simulator (A. Battaglia, U. of Leicester, and S. Tanelli, JPL)
- Quick1D: 1D single-scattering non-doppler model (similar to Quickbeam and SDSU radar and lidar)

Observer Placement

Orbit simulator

(Current method)

- Specify 5 Keplerian elements and position of the satellite at 0-sec simulation time
- Specify start and stop simulation time lacksquare

(To be added)

Two-Line Element (TLE) and STK (Systems/Satellite ToolKit)

Domain sampling (current method)

(Current method)

- Place observing instrument at the top of each ulletcolumn of the atmosphere
- Simulate the observation at nadir, ignoring antenna's beam and pointing parameters
- Specifically added to satisfy custom requests •

- Main areas of improvement
 - Surface Scattering Models
 - Web service/ OSSE Interface
 Analysis
 - Cloud Computing

Overview

New Surface Scattering Models

- Version 1.0: Earth's surface has no sub layer
- Version 2.0: Layered surface can be specified. Scattering Models that can support layered surface have been integrated

Implemented for v1

Being implemented for v2

- (1) English, S., and T. Hewison, 1998: A fast generic millimeter-wave emissivity model, Proceedings of SPIE, 3503, 288-300.
- (2) Liu, Q., F. Weng, and S. English, 2011: An improved fast microwave water emissivity model. IEEE TGRS, 49, 1238-1250.
- (3) Majurec, N. ; Johnson, J.T. ; Tanelli, S. ; Durden, S.L., (2014) Comparison of Model Predictions With Measurements of Ku- and Ka-Band Near-Nadir Normalized Radar Cross Sections of the Sea Surface From the Genesis and Rapid Intensification Processes Experiment, IEEE TGRS, Volume: 52, Issue: 9, Page(s): 5320 – 5332
- (4) Majurec, N., Johnson, J. T., Tanelli, S., & Durden, S. (2012). Near-nadiral normalized radar cross section of the SEA surface at Ku, Ka, and W-Bands: comparison of measurements and models. (<u>http://trs-new.jpl.nasa.gov/dspace/handle/2014/42527</u>).
- (5) Sermsak Jaruwatanadilok; JPL
- (6) Aires, F., Prigent, C., Bernardo, F., Jiménez, C., Saunders, R. and Brunel, P. (2011), A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Q.J.R. Meteorol. Soc., 137: 690–699. doi: 10.1002/qj.803
 (7) Shadi Oveisgharan; JPL
- (8) Marc Simard; JPL
- (9) L. Tsang, W. Chang, T.-H. Liao; University of Washington
- (10) Weng, F, B. Yan, and N.C. Grody, 2001: A microwave land emissivity model. J. Geophys. Res., D17, 20115-20123.
- (11) MODIS derived emissivity model

Some Selected Surface Models Grassland

U. of Washington Vegetation Model

- Modeled as cylinders for different types of vegetation
- Numerical Maxwell Equation Model (NMM3D)
- SMAP, AMSR-E, GPM, GCOM-W satellites

U. of Washington Snow Model

- GCOM-W, TRMM, SnowSAR (ESA aircraft), SCLP, GPM
- Validated with SnowScat measurement

ПП

Corn

Wheat

Forward model validation with Experimental data from SMAPVEX12

Radar

Web Service

- Simulation process can also be controlled via web service calls
- Especially useful for repeating simulation while varying certain sets of parameters:
 - Running simulation for comparison with actual observations
 - OSSE: perturb a parameter over a range of interest and observe the impact

- Version 2.0:
 - Only send updated values
 - Recognize a list input and automatically generate multiple jobs
 - Reuse intermediate outputs from similar jobs

Processing Options

Local

neos3.jpl.nasa.gov, 16 CPUs, 128GB memory

Remote

NASA's Advanced Supercomputing (NAS) Division

Cloud

New in Version 2.0 !

Cloud Computing

- Automatically adapt to workload changes
- Implemented JPL Polyphony, a resilient, scalable, and modular workflow orchestration framework for Cloud Computing
- Private Cloud. Benchmarking is ongoing.

33

Architecture

- **NEOS³ developer**: Adaptable to future technology changes. Thanks to modularity of the design and the software frameworks
- **Contributors**: minimal change is required. No code restructuring needed (w/ some exceptions)

Summary

Collaboration

- Request for NEOS³ account or suggestion: Noppasin.Niamsuwan@jpl.nasa.gov
- Contributing a model
 - Source code is revision controlled (git) and hosted by our server
 - Minimal change is required: interface compliance, unit tests
 - Alternative: Contribute a lookup table for more complex algorithm
 - The approach has been successfully demonstrated for internal (JPL) and external (university partner) code contributors.

Code base a	& Revisio	n control o git
System developers		Contributors (all)
		common
	NEOS3_bin	libism_beam_0x1001 tanelli libism_beam_0x1002 libism_beam_0x1003
		libsems_0xo110 jturk
		Your library ! [YOU!]

Collaborative Workbench (CWB)

- CWB (R. Ramachandran¹, M. Maskey², C. Lynnes³, K.-S. Kuo^{3,4}) is a framework for facilitating science algorithm development
- Eclipse based IDE (Integrated Development Environment)
- NEOS³ contributed to CWB development by serving as a practical example of an external tool integrated in CWB via web services (i.e. users run NEOS³ from Eclipse editor)
- CWB will facilitate user access, further development, and expansion of NEOS³

¹NASA Marshall Space Flight Center, ²University of Alabama-Huntsville, ³NASA Goddard Space Flight Center, ⁴Bayesics, LLC

- NEOS³ was developed to fulfill the need of generalized observing system simulators
 - Web-based and web-service enabled
 - State-of-the-art models
 - Modular and extensible infrastructure
 - Local and remote (including Cloud) processing options
- Possible applications include model evaluation, trade studies
- Collaboration is encouraged: Use it or help us improving it

