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Everyone talks about Big Data, but no one does
anything about it.

— paraphrased from Charles Dudley Warner
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Automated Eventl!! Service
L

ESTO (AIST) project now in 3™ year of funding.

® Enable systematic identification of investigator-defined Earth science
events from reanalysis and satellite data.

“* Addressing a significant portion of ES research;
** Reducing duplication of effort among research teams;

“* Improving return on investment (ROI) for NASA data and compute
resources.

@ Provide driver to improve affinity of computing and data resources
“* Move computing to the data rather than data to computing.
@ Greatly improve interactive data exploration and analysis.

[1] Events are occurrences of phenomena, usually 4D (space and time) in nature.
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Current Data Archive and Distribution
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¥ File based archive distribution.
© Only metadata are cataloged in databases, thus searchable.
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Gap between HPC and Regular User
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What is Happening Now?
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Results of the Current Paradigm
.

@ File- or granule-level discovery and access:
*» Search metadata store to order,
+** Direct download from URL, or
** Access within file provided through a data protocol, e.g. OPeNDAP.

¥ Inherently serial process

¥ Requiring local storage and compute
“* Researchers must engage in activities unrelated to science:
» procurement and maintenance of storage and compute resources,
» data management, i.e. downloading, organizing, backing up...

¥ Considerable duplication of efforts/resources
@ Collaborations difficult.
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Standard HPC/Cloud Solution

A

Advantages

* Solves infrastructure/
redundancy problem

* Data colocated with
compute

* Supports a wider range of
data analysis problems

X

Disadvantages

Analysis limited to data available
on the cloud

Data is still file-based

Optimization requires data
movement and parallel
programming

No sharing/collaboration



AES Vision

Focus on Event Analytics (Phenomena Detection/Characterization)

D
)
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Advantages | Disadvantages
* AES middleware provides parallel
optimized algorithms * Data needs to be preloaded
* Combines server side processingand e i
local analysis providing maximum Scope of anaIyS|S ’.’m’ted to
flexibility data loaded on SciDb and
* Collaboration achieved through CWB the algorithm set available
Integration (authentication, . .
authorization, sharing and in AES middleware
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A Big-Data Solution: SciDB
_—

An all-in-one data management and advanced analytics
platform that features:

“» Complex analytics inside a next-generation parallel array database,

» i.e. not row-based or column-based like RDBMS’s based on table data
model

** Based on the “shared nothing architecture” for data parallelism,
** data versioning and provenance to support science applications, and
“* Open source (currently in beta).

A better performer than Hadoop (MapReduce), 2-10 times
faster, in almost all benchmarks that we have performed so
far.
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Basic SciDB Architecture
bt

SciDB Coordinator Node

SciDB Client Engine

(iquery, Python,
R,C++,C) System Catalog

'« | PostgresqQL
: Connections

SciDB

Engine

Local
Store
e

SciDB Worker Nodes
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NCCSl “SciCloud” Cluster
St

€36 nodes

“*30in a main cluster
“* 6 in a test/development cluster

¥ 2x8 SandyBridge Intel Cores, i.e. 16 cores per node,
932 GB memory per node,

936 TB local storage per node,

¥ FDR Infiniband

¥ Gigabit ethernet

[1] NCCS — NASA Center for Climate Simulation @ GSFC
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Blizzard Science Scenario
\

@ Definition: According to NWS, a blizzard means that the following conditions are
expected to prevail for a period of 3 hours or longer:
% Sustained wind or frequent gusts to 15.6 m/s (35 mph) or greater; and
“* Considerable falling and/or blowing snow, i.e., reducing visibility frequently to less than 400
m (¥ mile)
€ The definition contains imprecise adjectives/qualifiers.

@ Point-based (local and/or instantaneous) definitions do not translate directly to
space/time-averaged parameters as in MERRAI' reanalysis data.

@ Itis obvious that visibility is the crucial criterion in defining blizzard, but MERRA does
not yet include visibility observation.

@ Visibility is directly related to in-air snow mass concentration and dependent upon
snow particle mass-dimension (morphology) property.

[1] MERRA - Modern Era Retrospective analysis for Research and Applications for the satellite era using NASA’s GEOS-5
model, focusing on historical analysis of the hydrological cycle. Itis composed of multiple regularly gridded data sets, ~100
TB total.

ESTF 2014, Leesburg, VA 14 29 Oct 2014



Additional Considerations
—

€ Most of the ES phenomenon definitions are, like blizzard, not based on space/
time-averages.

@ Itis not possible to define ES phenomena unequivocally (e.g. nothing but grid
cells containing blizzard condition) using space/time-averaged data sets such as
MERRA re-analysis.

@ The goal thus becomes finding the smallest possible superset that, for example,

J/

¢+ captures all blizzard grid cells and

R/

“* minimizes the number of false-positive, non-blizzard grid cells.
¥ Not all fields may be available. In-air snow mass concentration is contributed
primarily by
% Falling snow — using snow rates in MERRA
% Blowing snow — using snow accumulation on surface and wind speed at 10 m above
surface as proxy

® Events found using MERRA serve as a basis to locate other useful data sets for
validation or refinements.
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Visibility vs. Snowfall Rate
Rasmussen et al (1999) plot \

visibilities and snowfall rates 10

& based on theoretical calculations of
various snow crystal types, and

& supported by observations.

® Variations among crystal types are
considerable.

® The bluelineis described by:

Visibility (km)

logv=—logs+3

aadl

0.1
0.01 0.1 1

v: visibility in meter Snowfall Rate (mmhr)

. 1 -1 Fic. 16. Theoretical visibility—snowfall relationships from Eq. (19)
§.sn OWfa ” rate In mm hI' compared to the observed visibility—snowfall data from 6 Mar 1995.

. . . The theoretical curves correspond to the crystal types observed for
® Theaboverelationisinturnusedto s event

find extinction as a function of
snowfall rate.
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V|S|b|l|ty VS. Wmd Speed

BLOWING SNOW
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Most studie DIty to
in-air snow mass concentration
(g m3).
& A combination of falling and
blowing snow.
Liljequist (1957) relates visibility
directly to wind speed based on

typical blowing snow situations
in Antarctica.

The blue line is described by
logv=—-0.1592w+4.5918

v: visibility in meter
w: wind sPeed 10-m above surface

Figure 05. Logarithm of visibility as a function of
wind speed at 10-m height for biowing snow condi-
tions. (From Liljequist®3),
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Using MERRA hourly data sets
@ Extract 2010 Winter US subset.

® Calculate:

% wind speed 10-m above surface, w, using the east-west (U1oM) and south-north (VioM) components,

%+ grid-area-weighted mean () and standard deviation (o,,) of w, and
% grid-area-weighted mean (x,) and standard deviation (o,) of log10 snow rates in snow-only grids.

€ Conduct trial experiments to define blizzard:

% Experiment with snow rate threshold defined as rational multiples of o, above u, i.e. 6, = u, + qo,,
% Find corresponding wind speed yielding same visibility as snow rate threshold in blowing snow conditions,
and

K/

“» Apply wind speed criterion to grids with snow accumulation over 3-cm.
@ Itis found that g = 1.6 yields satisfactory results
@ For the global data sets

% Findu,,o,,u, and o,
Use the same ¢ to determine snowfall threshold, and
Determine corresponding wind speed criterion.

/7
0’0
7
0.0
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2010 Winter US Blizzard Animation - 2009-12-01 00:00:00 : T = 0000
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AES Major Features
—

@ Custom user-defined operators (UDOs)
% Connected Component Labeling (CCL) algorithms implemented, and more coming.

@ Event Specification Language (ESL)
<+ Allowing scientists to express their using Python rather than low-level SQL.
@ Collaboration via the Collaborative Workbench (CWB).
%+ Event definitions and search results can be shared and modified.
¥ Parallel performance.
*+ Data-parallelism native to SciDB’s shared-nothing distributed architecture.
% Calculations performed on local data of a to minimize data movements.
@ AES provides a web service

% It not only enables the ESL mentioned above, but also allows AES to be embedded
within other applications.
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—

© The Big Data analysis solution demonstrated by AES is meant to be an
agency-level (or higher) facility solution, similar to Data or HPC centers.
“* i.e. Not a departmental level solution.
“* Cloud-ready!

@ Developing User-Defined Operators/Functions (UDO/F’s) requires
professional software developers.

“ Extensibility suffers but gains better software quality!
@ Completed UDO/F’s are immediately “reusable”.

@ Parallelism is built into the shared-nothing architecture and
professionally crafted UDO/F’s.

% Scientists can take advantage of parallelism without learning parallel
programming!
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Related Projects
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PROBE: Process-Based Diagnostics
—

Team: G. Schmidt, K. Kuo, M. Bauer, A. Oloso

Enable routine use of process based diagnostics (PBDs) as a means for targeted
improvement of weather/climate models.

@ Conventional diagnostics are inadequate:

 Strong coupling - difficult to point finger

“ Signal is diluted by portions of domain where process is inactive
@ Builds upon Automated Event Service (AES)

0‘0

» Step 1is to identify regions in which a selected process is active. l.e. “events” by AES
definitions.

/7

“* PROBE requires more analysis and customized operators.

€ PROBE must also extend AES to support:

/7

%+ Ensembles and versioning

X/

*» Routine automations for iterative evaluation

29 Oct 2014
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Statistics

J Statistics

Intercomparison

IGARSS 2014, Québec City, Canada

Conditional Average Triggered by anomalies
* Extreme or rare events (heat waves, downpours)
e Introduces context

* This happens when...
Lagrangian Viewpoint
* Movable frame centered on the object of interest.
* Preserves life-cycle and internal spatial structure.

Process-based diagnostics merge these methods.
* Diagnosing issues with development, structure and
feedback.

* Closer to elemental processes/procedures.

24 29 Oct 2014
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How are process-based diagnostics useful?
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How are process-based diagnostics useful?
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Deploying AES in the Cloud
e

® Goals:

«* Explore feasibility of providing AES as a cloud-service

“* Demonstrate scalability of AES/SciDB on large systems

¥ Limitations of existing resources:

“* Traditional HPC is not well-suited for interactive exploration
and distributed 1/O

“* Traditional data centers are not well-suited for custom (user-
defined) analysis. Also data is segregated across DAACs.

@ Cloud-based computing appears well-suited.

IGARSS 2014, Québec City, Canada 27 29 Oct 2014



AES in the Cloud
—

@ Procured ~ $180k of Amazon Web Service
“*~30,000 node-hours
“*30 TB of storage for 6 months

@ Milestones:

“*Replicate AES Blizzard query on 30 nodes
“*Evaluate scalability on 300, and 3000 nodes

¥ Status?
“*Lots of surprises in various facets of deployment.
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—

@ Lessons learned
** AWS Service default limits — contact AWS to fix
“*Avoid using AWS Market images in a cluster

“*Starcluster is too aggressive about freeing resources
when problems arise

%+ Use S3 as primary storage

»Robust, cost effective, and accessible

»Good for staging to faster ephemeral (EBS) storage
“*Use EBS storage for application
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Feasibility Study: Moving Object

¢ MODB

«* Traditional databases are poorly suited for modeling objects
that move and change over time

» E.g. instrument flies over hurricane between 6 hour
snapshots from model output.

“* ESTO funded MODB effort led by M. Schneider to overcome
these limitations. Implemented in traditional database.

© Conclusion: array data model is better suited than table
model but geometric operations in SciDB still needs
extensions
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Future Directions
—

¥ Extend capabilities:
“*Include support for ungridded/swath data
“*Support regridding to compare across data sets

“*Enable nonlinear dimensionality reduction to find
nontrivial correlations in data

“*Enable treatment of moving objects

@ Build user community
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® We would like to thank:
“*NASA ESTO/AIST and MAP for supporting this work

“*NASA High End Computing and the NCCS for computing
resources
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Supplemental Material
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Develop an Automated Event Service system that:

* Methodically mines custom-defined events (e.g.,
tornadoes) in the reanalysis data sets of global
atmospheric models.

* Enables researchers to specify their custom, numeric
event criteria using a user-friendly web interface to
search the reanalysis data sets.

* Supports Event Specification Language (ESL) for more
flexibility and versatility.

+ Contains a social component that enables the dynamic
formation of collaboration groups for researchers to
cooperate on event definitions of common interest.

* Provides rapid results via high performance computing and
advanced search technologies.

* Leverage advances in high-end computing and search
technologies to create an efficient mechanism for
searching reanalysis data for events.

* Build baseline system by custom integration of mature
components: HPC cluster, MapReduce, Hadoop/Hbase.

* Develop ESL via analysis of representative events.

+ Adapt advanced tree-based indexing strategies to
efficiently support parameter-based event queries

* Apply agile methodology: develop in small increments
driven by use cases and synthetic tests.

Co-Is/Partners: Kwo-Sen Kuo, Bayesics; Rahul Ramachandran,
NASA MSFC

AIST-11-0008

Automated Event Services

Utilize Big-Data collaboration
technologies to...

> Relieve scientists from data Bid Deta technologies
management, (SCIDB, POLARIS, HADOOP)

> Empower scientists to focus
on science, and

s Boost science productivity.

1 Identify occurrences
(events) of phenomena

Entities in the 4D
spatiotemporal space

> Enable interactive and collaborative ” :
scientific data analysis on big data 2 Associate additional
> Share data and analysis methods interactivh data and relevant data with events.
sy, I ?/irsauall o yticzn 3 Chéracterge phenomena
G, With defining features
Initely extracted from data.
4 Correlate defining features
of various phenomena in
both space and time.
5 Improve predictions of
future events using correla
tions among phenomena for
better decision making.

Big-Data Technology Science
Vision Infrastructure Enablement

*+ Import reanalysis data

* Implement native indexing

+ Complete event web service

+ Complete basic web portal

* Complete distributed event database

+ Design review for ESL

- Demonstrate Blizzard use case on 30-node

commercial cloud cluster

+ Complete multifaceted web portal

+ Complete tree-index search capability
+ Complete delivery of ESL

+ Testing and validation

TRL, =2 TRL, 4

urrent ~
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Current Situation
—

© The majority of NASA Earth science data (~10 PB) are
archived and distributed as files, ...

¥ Standardized through APIs, such as HDF and netCDF,
for access, ...

® Only the metadata are cataloged into RDBMs and are
thus searchable.

¥ Searching for data not contained in the metadata
becomes slow, e.g. precipitation intensity > 0.7 mm hr.
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Current Data Analysis Practice

=Dt
Center

Center 3

¥ Everyone downloads needed data from data centers.
# Data analysis is conducted on local resources, mostly serially.
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Traditional HPC Architecture

‘

User 7 |
] e B

Compute

=Dt
Center

e Storage
- A
Center 3 e

¥ Fast, central, large storage system.
@ Suitable for MPI parallelism, but few scientists can program with it.
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Data Intensive Architecture

= Datas
Center

@ Distributed storage with local compute access.

@ Loosely coupled parallelism requires little or no inter-
process communication
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Data Archlve Distribution, and

distribution ma

¥ Data directly “archived” into parallel databases for
distribution and/or analysis.
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