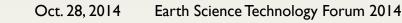
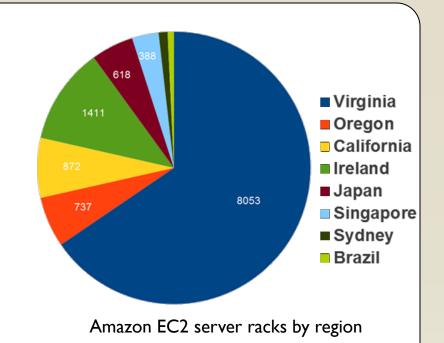


Enabling Volunteered Cloud Computing for Disaster Management

Earth Science Technology Forum 2014 October 28, 2014

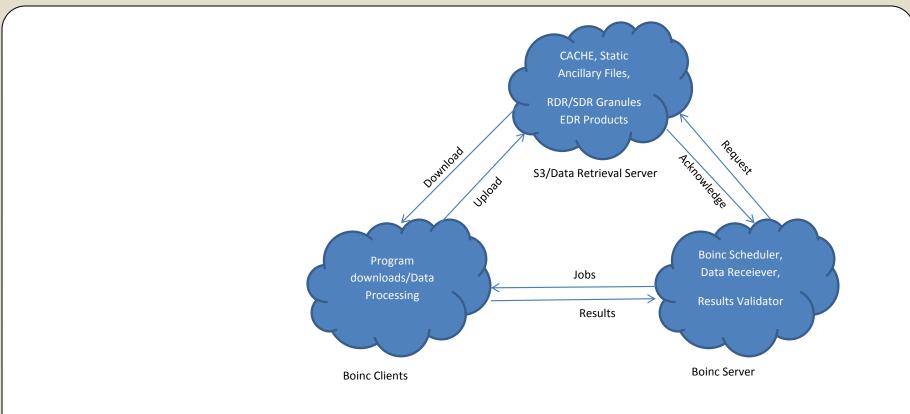

John D. Evans, Wei Hao, Samir Chettri Global Science & Technology, Inc. (GST)


Key concepts

- Volunteered Computing
 - Broad public participation in large computations, using slack resources on desktop computers
 - SETI@Home, Folding@Home, PrimeGrid, ...
 - However: Slack capacity may diminish in coming years, as mobile devices gain market share
- Might Volunteered Cloud Computing (VCC) fill the gap?
 - Participants contribute cloud computing resources
 - Esp. resources paid for but unused or underused
 - Virtual machine time, virtual storage volumes, etc.
- VCC may also offer improvements in...
 - Bandwidth
 - Scalability
 - Flexibility for complex code or data
 - Optimal use of cloud computing resources

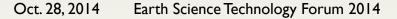
Feasibility

- Amazon Web Services computing resources:
 - (March 2014 estimate)
 - 12,300 racks worldwide (incl. ~8,000 in us-east-1)
 - I2M CPU cores worldwide (8M in us-east-I)


- AWS Volunteered cloud computing resources:
 - (@ 0.1% participation) 1,600 core-hours/hr worldwide (900 core-hours/hr in us-east-1)
- Disaster mgmt. may provide a compelling cause

Platforms and Applications

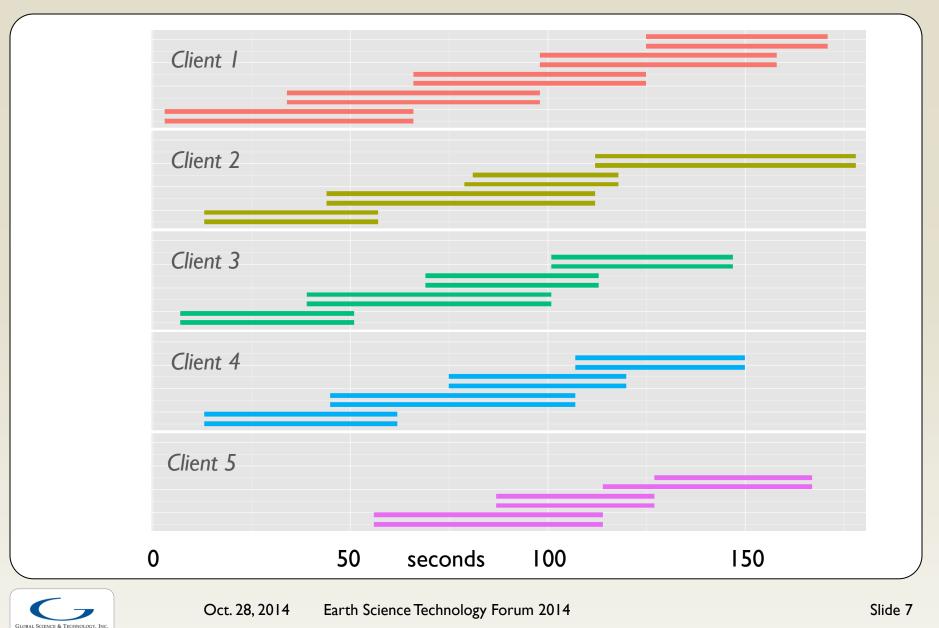
- Candidate distributed computing platforms:
 - Hadoop / MapReduce
 - Berkeley Open Infrastructure for Networked Computing (BOINC)
 - Parabon / Frontier[©] Grid Platform
- Candidate computing applications:
 - Hurricane / storm coastal surge model
 - Landslide modeling
 - CREST hydrology model
 - Near-Real-Time processing of S-NPP VIIRS observations



Proof of concept

Using BOINC protocol applied to

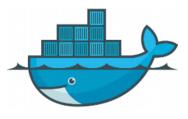
 CREST hydrology model runs
 S-NPP VIIRS fire detection algorithm



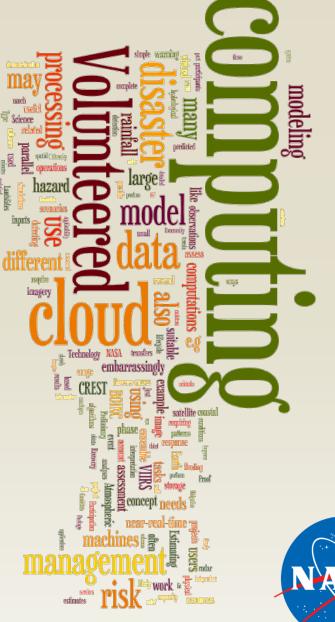
Preliminary experiments

- CREST model ensembles:
 - Deploy ("stage") 20 input datasets for download
 - Random perturbation of rainfall estimates
 - Create 20 work units for execution
 - I per scenario
 - Use the BOINC dashboard to monitor progress on work units
 - Once results are complete & validated, review the
 (20) overland flow rates for a particular day.

Work unit execution


Preliminary findings

- Simple proof of concept
 - Automated data management processes
 - Transferring many files
 - Bundled into .zip files, with pre/post scripts
- Scalable to larger computing tasks
 - S-NPP VIIRS near real time processing
 - Manage data files on AWS Simple Storage Service (S3)
 - Clients receive S3 URLs for data input files
 - Clients upload outputs to S3 via signed URLs
 - Many server & client configuration options



Ongoing work & future plans

- Extend basic capabilities:
 - Larger data volumes (VIIRS SDR + ancillary)
 - "Interstitial" computing
 - Use the remainder of a billing hour for free
 - "Repurposing" clilent machines for more complex code / data dependencies
 - Virtual storage volumes
 - Virtual machine images (e.g., Docker containers)
- Capture insights & recommendations
 - Disaster Management use cases
 - Broader applicability
- Engage volunteers & scale up

Discussion

Or contact: john.evans@gst.com

