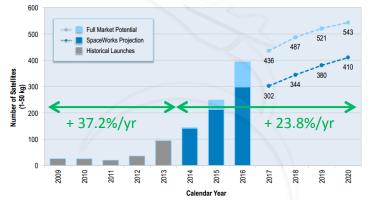
Emerging Earth Science Technologies in Disaster Risk Management

John D. Evans Global Science & Technology, Inc. (GST) Greenbelt, Maryland


- Review emerging earth science technologies
 - Small Satellites; Drones
 - Crowdsourcing; Location-Based Services
 - Direct Broadcast; Sensor Web; Internet of Things
 - Big Data Analytics; Model Webs; Cloud Computing
 Collaboration & Semantic Services
- Analyze their roles in Disaster Risk Management
 - Using GEOSS Architecture for Disasters / GA.4.D
 - Ingredients of streamlined integration
 - Working towards technology roadmaps

Small Satellites

Nano/Microsatellite Launch History and Projection (1 - 50 kg)

Projections based on announced and future plans of developers and programs indicate between 2,000 and 2,750 nano/microsatellites will require a launch from 2014 through 2020

The Full Market Potential dataset is a combination of publically announced launch intentions, market research, and qualitative/quantitative assessments to account for future activities and programs. The SpaceWorks Projection dataset reflects SpaceWorks' expert value judgment on the likely market outcome.

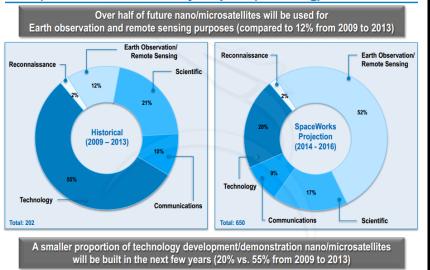
Please see End Notes 1, 2, 4, 5, and 6.

💐 Space Works

Copyright 2014, SpaceWorks Enterprises, Inc. (SEI)

Skybox + Google

GLOBAL SCIENCE & TECHNOLOGY, IN

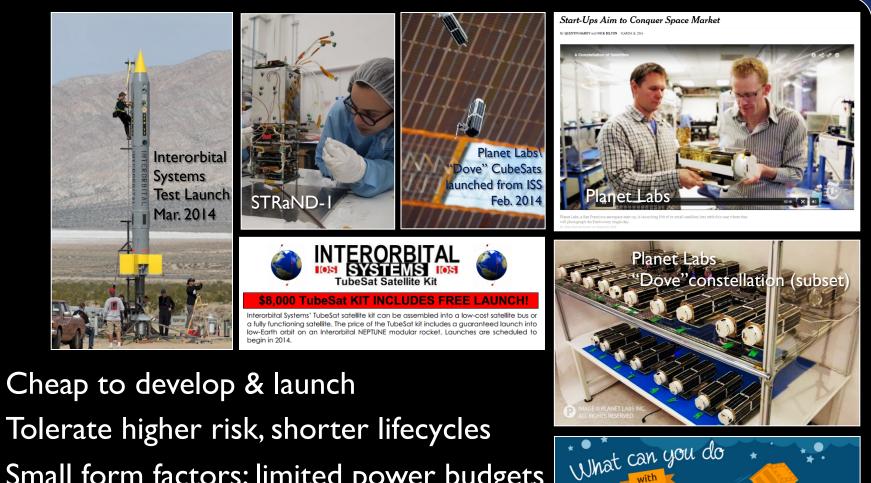


* Please see End Notes 2, 6, and 7.

7

SpaceWorks[.]

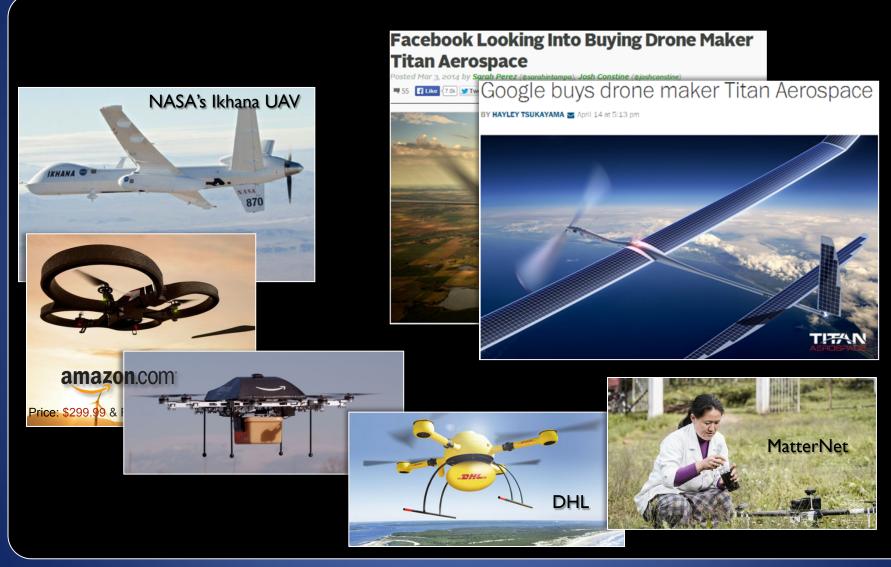
Nano/Microsatellite Trends by Purpose (1 - 50 kg)


Copyright 2014, SpaceWorks Enterprises, Inc. (SEI)

Surrey/DMCii Disaster Monitoring Constellation

10

CubeSats



- Small form factors; limited power budgets igodot
 - Deployable optics; Nanolayer synthetics

http://www.diyspaceexploration.com

Unmanned Aerial Vehicles (drones)

Unmanned Aerial Vehicles (drones)

	UNEP Global Env Taking the pulse of th		t Service (GEAS) g science with policy	\sim
UNEP	Website: www.unep.org/geas		E-mail: geas@unep.org	V
MAY 2013	Home	Subscribe	Archive	Contact

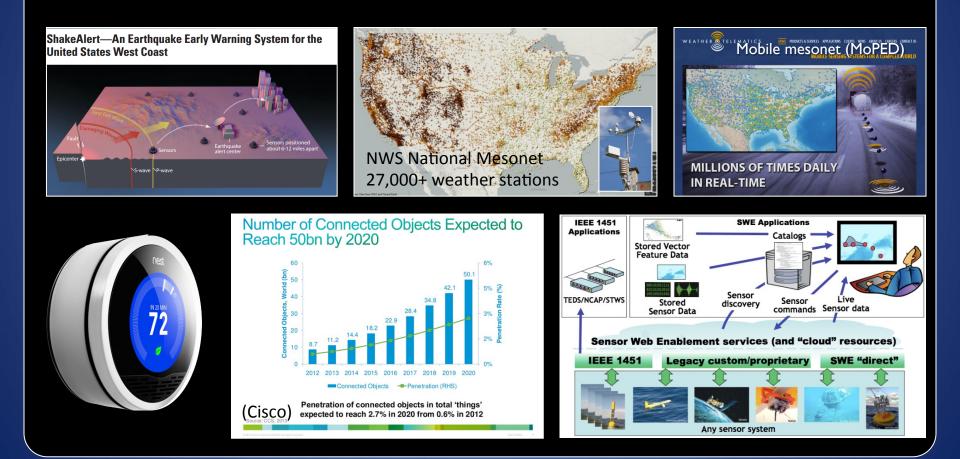
Thematic focus: Climate change, Ecosystem management, Environmental governance

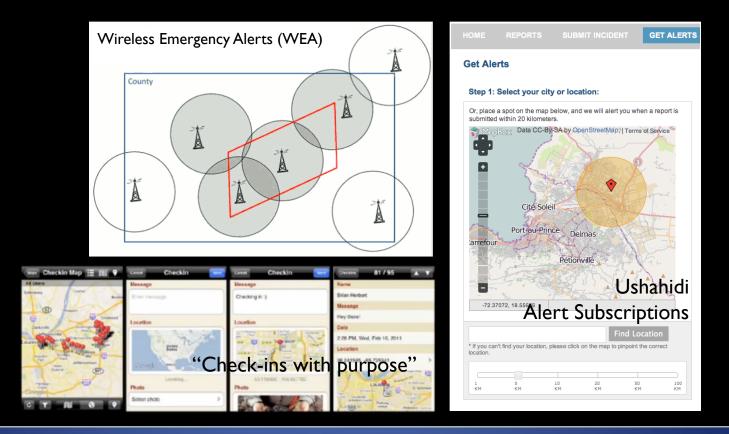
A new eye in the sky: Eco-drones

A drone is generally thought of as a military weapon or surveillance tool. Commonly referred to as an unmanned aerial vehicle (UAV), unmanned aerial system (UAS) or remotely piloted aircraft (RPA), a drone can also provide a low-cost and low-impact solution to environmental managers working in a variety of ecosystems. Drones used for these purposes are referred to as 'eco-drones' or 'conservation drones.' Their agility and quality imaging abilities make them advantageous as a mapping tool for environmental monitoring, but there are still several challenges and concerns to be surmounted.

Change MappingDisaster Risk ManagementDisaster Risk MitigationIllegal ActivityMonitoringRiver erosionFlooding riskMap impacted areasPoachingMigration patternsDeforestationLandslide riskBroadcast messagesIllegal fishing species statusEndangered species statusUrban expansionVolcano eruption riskMonitor forest fire spreadIllegal tradeAgriculture					
River erosionFlooding riskareasPoachingpatternsDeforestationLandslide riskBroadcast messagesIllegal fishingEndangered species statusUrbanVolcanoMonitor forestIllegal tradeAgriculture	-			Illegal Activity	Monitoring
Deforestation Landslide risk messages Illegal fishing species status Urban Volcano Monitor forest Illegal trade Agriculture	River erosion	Flooding risk		Poaching	
	Deforestation	Landslide risk		Illegal fishing	
			Monitor forest fire spread	Illegal trade	Agriculture

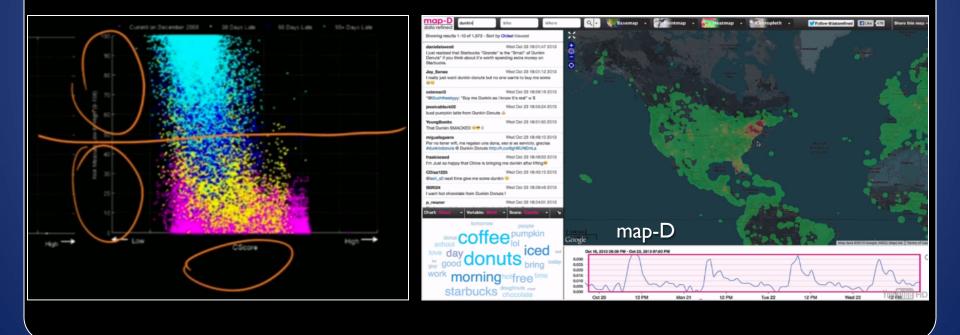
'Eco-drone" applications (per UNEP Global Alert Service, May 2013)


Crowdsourcing via mobile devices


Sensor Web & "Internet of Things"

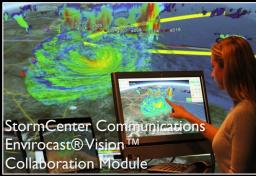
• Sensor-based detection of earthquakes, severe weather, forest fires, oil spills, volcanic gas plumes, drought

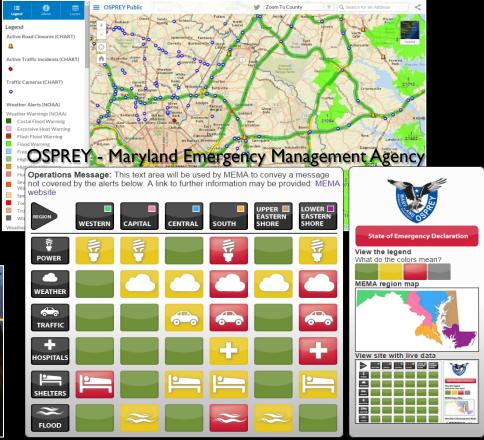
Location-based services


- Geographically targeted advisories
- Location-specific information access / subscriptions
- Check-ins \rightarrow real-time maps

Big Data analytics

- Patterns & correlations
- Ensemble simulations \rightarrow Risk envelopes
- Machine learning





Collaboration Services

• Centralized or distributed

Semantic Services

- Disaster-specific ontologies:
 - Disaster Response Ontology (E.U. "Disaster 2.0" project)
 - Management of a Crisis (MOAC) Vocabulary
 - Humanitarian Exchange Language (UN OCHA)
 - SoKNOS (German public safety agencies)
 - Others (See also: UNISDR Terminology)
- Standards for expressing and using semantics:
 - SPARQL Protocol and RDF Query Language (SPARQL, GeoSPARQL)
 - Web Ontology Language (OWL)
 - Web Service Modeling Ontology (WSMO)
 - Simple Knowledge Organization System (SKOS)

Other potential game-changers

- Model Web / Modeling as a Service
- Cloud Computing
- Satellite Direct Broadcast / Direct Readout
- Gigabit networking?

How to make sense of it all?

CEOS / GEOSS Architecture for the use of Remote Sensing Products in Disaster Management and Risk Assessment (GA.4.D)

GEOSS Architecture for the Use of Remote Sensing Products in Disaster Management and Risk Assessment

1. Executive Summary

- 2. Introduction / Overview / Motivation
 - 2.a. Audience and scope
 - 2.b. Goals and Requirements
 - 2.c. Approach: Reference Model for Open Distributed Processing
 - 2.d. Approach: practitioner case studies

Enterprise Viewpoint

- 3.a. Purpose and scope
- 3.b. Hazard types and disaster lifecycle phases
- 3.c. Activities (Business Processes)
- 3.d. Stakeholders
- 3.e. Principles
- 3.f. Enterprise view: points of comparison

4. Information Viewpoint

- 4.a. Overview
- 4.b. Observations and parameters by disaster type
- 4.c. Metadata needs in a disaster management context
- 4.d. Data operations needed in a disaster management context
- 5. Computation viewpoint
 - 5.a. Overview
 - 5.b. Service types needed for disaster management and risk assessment
 - 5.c. Constraints and requirements specific to disaster management
- 6. Engineering and Technology Viewpoints

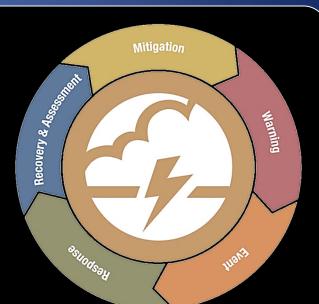
References

Appendix 1: Namibia Flood Pilot

Appendix 2: China Sichuan / Wenchuan earthquake

Appendix 3: Japan Sendai / Tohoku earthquake & tsunami

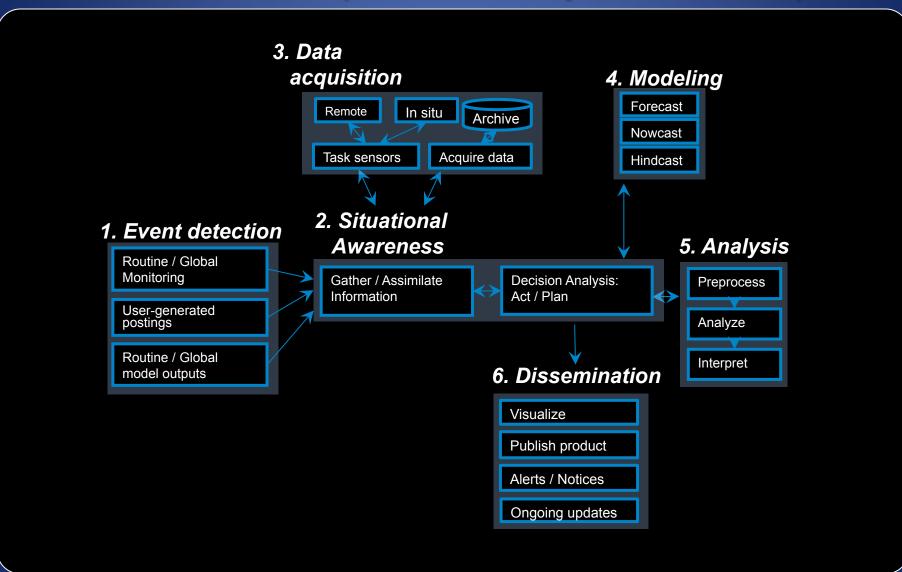
Appendix 4: International Charter - Space and Major Disasters

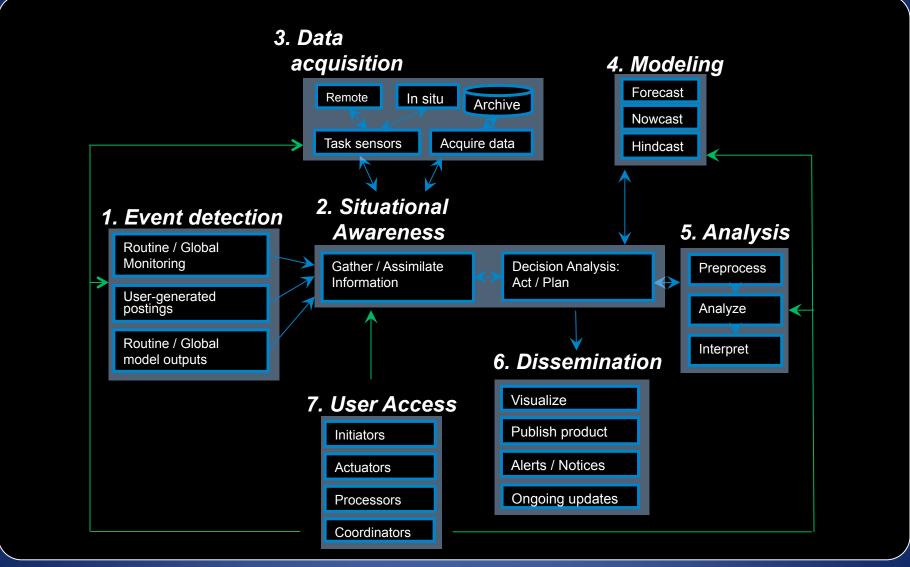

Appendix 5: (Alternative / Future) Case Study Candidates

Appendix 6: Case Study Questionnaire

Scope, purpose, structure

- Lifecycle phases
 - Mitigation Warning
 - Response Recovery
- Hazard types
 - Flooding Earthquakes Volcanoes
 - Drought Windstorms Landslides
 - Wildfires Tsunamis
- Values and priorities (GEOSS, CEOS)
 - System of Systems Data Sharing Principles
 - Interoperability Arrangements





Activities (business processes)

Activities (business processes)

Emerging technologies and architecture viewpoints

Information viewpoint

- Small Satellites
- UAVs (drones)
- Direct Broadcast
- Semantic Services
- Mobile devices
- Internet of Things
- Crowdsourcing

Computation viewpoint

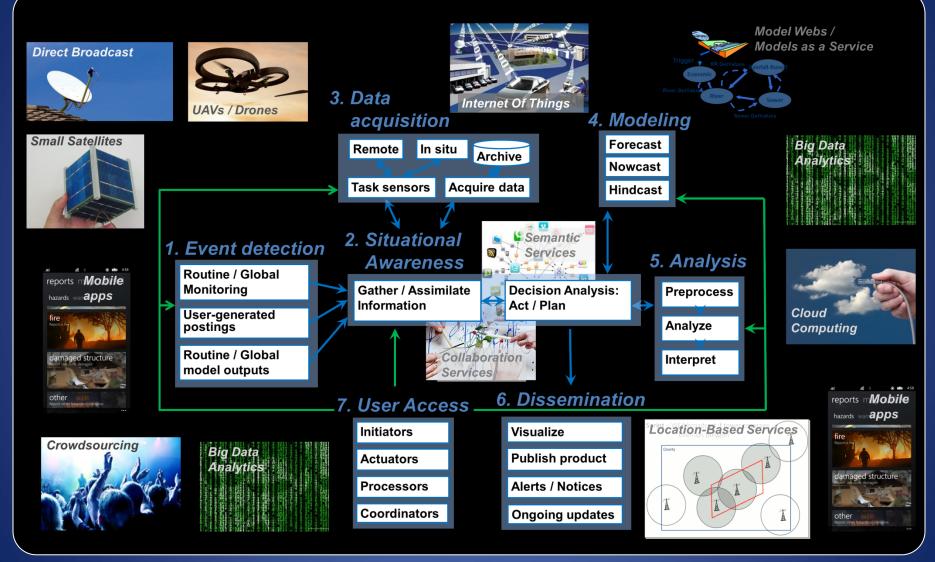
- Big Data analytics
- Model Webs
- Cloud Computing
- Semantic services
- Mobile devices
- Location-based services
- Collaborative services

Emerging Technologies and Disaster Lifecycle Phases

	Warning	Response	Recovery	Mitigation	
Unmanned Aerial Vehicles (Drones)	•	•			
Small Satellites (incl. CubeSats)	•	•			
Satellite Direct Broadcast / Direct Readout	•	•			
Internet of Things / Sensor Web	•		•	•	
Crowdsourcing	•	•	•	•	
Big Data Analytics	•	•		•	
Model Webs / Modeling as a Service	•		•	•	
Cloud Computing		•	•		
Location Based Services	•	•			
Semantic Services		•	•	•	
Collaboration Services	•	•			

Emerging Technologies and Natural Hazard types

	Floods	Earthquakes	Volcanoes	Droughts	Windstorms	Landslides	Wildfires	Tsunamis	(Any)
Unmanned Aerial Vehicles (Drones)	•	•			•	•	•		•
Small Satellites (incl. CubeSats)	•			•	•		•	•	
Satellite Direct Broadcast / Direct Readout	•		•	•	•		•	•	
Internet of Things / Sensor Web	•	•		•	•		•		•
Crowdsourcing	•	•			•	•			
Big Data Analytics	•	•			•				•
Model Webs / Modeling as a Service									•
Cloud Computing									•
Location Based Services	•	•			•				•
Semantic Services									•
Collaboration Services									•



Emerging Technologies and Disaster Mgmt. Activities

	Event detection	Situational awareness	Data Acquisition	Modeling	Analysis	Dissemina- tion	User Access
Unmanned Aerial Vehicles (Drones)		•	•				
Small Satellites (incl. CubeSats)	•	•	•				
Satellite Direct Broadcast / Direct Readout	•	•	•				
Internet of Things / Sensor Web	•	•	•				
Crowdsourcing	•	•	•			•	•
Big Data Analytics	•	•	•	•	•		
Model Webs / Modeling as a Service					•		
Cloud Computing				•	•		
Location Based Services						•	•
Semantic Services		•	•		•		•
Collaboration Services		•					
	• = Doc	cumente	d •	= Plc	iusibl	le / Antio	cipated

Emerging Technologies and Disaster Mgmt. Activities

GLOBAL ŚCIENCE & TECHNOLOGY, INC.

Oct. 28, 2014 Earth Science Technology Forum 2014

Integrating new technologies: Architecture

- Clarify data / analysis / communication needs
 - Semantic content; formats of files and data streams
 - Behavior & services; system interactions; component interfaces
- Articulate broadly-defined goals and practices
 - Get beyond current practice and *ad hoc* arrangements
 - Adopt new tools based on anticipated roles / benefits
 - Facilitate building flexible, sustainable capability
- Envision new capabilities enabled
 - Technologies may enable new goals (not just new methods)

Integrating new technologies: Standards

- Alleviate vendor lock-in; Allow creative repurposing
- Widely-adopted, consensus-based standards for
 - Information semantics
- Service definitions

• Data formats

• Software interfaces

- Examples:
 - OGC SensorML (StarFL?), SOS, W*S; OPeNDAP; IOOS; SPARQL; etc.
 - OpenMI, Eucalyptus, OpenStack, MapReduce, ...?
- Challenge: pace of technology adoption
 vs. pace of consensus processes

Towards technology roadmaps

- Mature (integrate)
 - Cloud Computing Direct Broadcast
- Near term [2014-2016] (accelerate, focus)
 - Smallsats, CubeSats Drones
 - Big Data analytics Location Based Services
 - Crowdsourcing Collaboration Services
- Medium term [2017-2020] (support, shape)
 Sensor Web, Internet of Things
- Future [2020-] (investigate)
 Models as a Service Semantic services

This is only a sketch

- Currently seeking input
 - From technology users, developers, experts
 - From practitioners in Disaster Risk Management
- Clarify and envision roles and impacts of these technologies in Disaster Risk Management
- Identify technology gaps or opportunities
- Roadmap, priorities for NASA, GEOSS, et al.

Your input is invited

john.evans@gst.com

