Extending the Earth Observation System System (EPOS) for Coordination of Asynchronous Sensor Webs

NASA ESTF 2014

October 28 2014

Stephan Kolitz (kolitz@draper.com) Pl Mark Abramson (mabramson@draper.com) Co-Pl

NASA AIST-11 Project:

EPOS for Coordination of Asynchronous Sensor Webs

Draper Laboratory
555 Technology Square
Cambridge MA 02139

Outline

- Opportunity to increase the overall value gained from Earth observing systems
- Our approach to achieving this through asynchronous distributed coordination
- Application to a NASA mission: HS3
- Conclusion

Problem

- Use of sensing assets (satellites, UAVs, etc.) for data collection is widespread, e.g.,
 - Ground images
 - Atmospheric chemistry and weather data
- Missions using these assets typically are managed independently of each other
- Result is less value than if the missions were coordinated

Current Process

Coordination Objectives

- Use existing infrastructure
- Work with a wide array of missions to increase system-wide utility attained
- Increase the overall value gained from Earth observing systems
 - Technology development: EPOS
 Coordination Manager and Data

 Access Tool
 - Technology infusion: for HS3

Coordination

Technology Useful for Multiple User Classes

Scientists

- Specific science goals
- Interested in specific characteristics of data (e.g., locations, times, spectral bands, resolution) and/or products that can be generated from the data (e.g., temperature, relative humidity, wind speed)

Analysts

- Specific goals, e.g., for better forecasts/predictions
- Value of data is for the analysis and forecasts, not necessarily science

Decision-makers

- Government
 - Goals: to save lives and preserve property; education
 - More interested in the implications of data, rather than the data itself

Public

- Goal: education; to be properly prepared for their own interests
- Uses media and the internet to gather information

User Observation Requests

- Simultaneous measurements, e.g., dual collection
 - Explicit desire for multiple measurements over an area e.g.,
 validation, calibration, quality improvement
- Persistent surveillance to minimize coverage gaps
 - Desire for maximized coverage over an area of interest
- Soonest possible observation
 - Request fresh situation awareness of a target that has likely changed due to movement or process dynamics

EPOS Major Components: High-Level View

Scientists Analysts DecisionMakers Opportunity requests opportunities and values opportunities and values opportunities and values opportunities and values opportunity requests opportunities and values opportunities

EPOS Coordination Manager

Opportunity Finder

Opportunity Finder: Determines and assesses potential collection opportunities for which required resources are available

Coordination Planner

Coordination Planner: Selects and schedules collection requests to maximize overall science value

Approach

Opportunity Finder

- Determines feasible collections that meet user requests using mathematical models of the systems, values and constraints
- Utilizes these models—in conjunction with a desired collection requirement—to identify the potential assets that could meet the requirement and assign a value to data collected by the asset

Coordination Planner

- Optimization-based planning approach used to identify which data collection *requests* should be sent to which mission/asset at what time
- The value of the collection requests to each user must be known (as input) and is key to optimizing the coordination of requests across all users and all assets
 - Uncertainty in the value function presents a key technical challenge

Rolling horizon decomposition

 Plan for a given length of time, get feedback during operations and replan as necessary

EPOS Functional Software Architecture

HS3 Mission Background

- The Hurricane and Severe Storm Sentinel (HS3) is a five-year mission specifically targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin
- Objectives achieved using two Global Hawk Uninhabited Aerial Systems (UAS) with separate comprehensive environmental (AV6) and over-storm (AV1) payloads

HS3 Measurement Types

Measurements from HS3 Instruments		
Vehicle	Instrument	Measurement Type
AV-6	AVAPS	Temperature
		Pressure
		Wind
		Humidity Vertical Profiles
	CPL	Cloud structure and depth
	S-HIS	Temperature
		Water Vapor Profiles
AV-1 (not flown in 2014)	HAMSR	Temperature
		Water Profiles
		Cloud Liquid Water
	HIRad	Surface Wind Speed
		Rain Rate
	HIWRAP	Radar Reflectivity
		Wind Profiles

HS3 Mission Timelines

- Multi-year mission
- Flight in late Summer → early Fall
- Multi-day time line per flight
- 25 hour flight duration

HS3 Timeline

2014 HS3 Missions Flown

Aug 22 - Sep 30, 2014

T-1 Days Product Example: AV6

T-0 Days Product Example

T+1 Product Example

Science Data Access Tool **Architecture**

- Users: any end user who will interact with the system
- Browser: the app will be accessible via browser of any device that has a connection to the web server where the app will be
- The Data Access Tool GUI is the main user interface for the app
- The Data Access API is the data retrieval. API that will query the **NASA Echo Metadata Repository** or any other metadata repositories as necessary to retrieve the appropriate datasets

Data Access Tool Workflow

Conclusion

- Identified a need for a broad range of users to acquire valuable timely science data and products derived from the data
- Developed and implemented an approach to achieving this without requiring modifications to existing systems
- Infusing the technology in a NASA mission: HS3
- Identified further capabilities that will add significant value for users