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What?

ACE will answer:

• What are the detailed aerosol composition 
and vertical profiles?

• Where are the aerosols: Above, below or in 
the clouds?

• What is the aerosol particle number density?
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Three2months2of2MODIS2aerosol2
observaAons2

Aerosol2forecast2model2loading2
for2same2period2

Aerosol2forecast2model2assimila&ng2
satellite2observaAons2looks2more2
like2observaAons2

• Satellite2observaAons2improve2our2modeling2capabiliAes2
• ACE2observaAons2will2further2improve2models2by2providing2more2detailed2
informaAon2on2aerosol2composi&on,and,ver&cal,distribu&on,
• Improved2models2are2key2to2(i)2forecasts2of2extreme2aerosol2and2weather2event2
and2(ii)2predicAons2of2aerosol2impacts2on2climate2

Zhang,2Reid2

Sources,	  processes,	  transport	  and	  sinks	  (SPTS)

Tuesday, October 28, 14



MODIS2day=2202year=2003;2Portugal2MODIS2day=2202year=2003;2Portugal2

Brightening2or2darkening?2

Cooling2or2warming?2

Above2the2cloud2or2below2or2inside?2

How2dark2(absorpAon2properAes)?2

Natural2or2anthropogenic?2

These2quesAons2cannot2be2answered2
222today2with2the2necessary2accuracy2
222or2coverage.2

We2need2a2more2quanAtaAve2
222characterizaAon2of2the2aerosol2
222system.2

DARF2

Direct	  aerosol	  radia7ve	  forcing	  and	  hea7ng	  (DARF)
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CAI2

aerosol2

Inside2the2cloud22
2222or2not?2

Changes2of2clouds2due2to2aerosols2depend2on2parAcle2number2concentraAon2
ACE2will2be2able2to2derive2this2parameter2for2the2first2Ame2

Cloud-‐Aerosol	  Interac7on	  (CAI)
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What we are doing?

Tuesday, October 28, 14



4/14

Objective

Key MilestonesApproach

Using Zero Emission Aerial Vehicles in Support of ACE

Major tasks include:
• Characterize surface variability of aerosol size distribution and 

abundance across the ACE footprint (250 m resolution) using a Grimm 
Model 1.109 Aerosol Spectrometer & 1.320 Nano Check and a full 
weather station measuring temperature, pressure, humidity, dew point, 
and wind speed and direction

• Integrate the Grimm Spectrometers and full weather station into the 
model aircraft

• Fly at a range of locations and times to demonstrate the ability to 
characterize the aerosol size distribution and vertical profiles in the 
boundary layer in the 100 m closest to the surface

None

PI: David Lary, University of Texas - Dallas

Co-Is/Partners

Address a key gap in existing validation capabilities for ACE by measuring 
the size distribution and vertical profiles in the boundary layer in the 
100m closest to the surface using a small aerial vehicle. The project will
• Demonstrate feasibility of using zero emissions remote control 

aircraft for satellite validation 
• Determine if a key gap in existing validation capabilities for the 

Aerosols, Cloud systems, ocean Ecosystems (ACE) can be filled with 
this technology

• Develop proper size distribution and vertical profiles of aerosols in the 
boundary layer 100m closest to the surface for ACE mission

TRLin = 5

The model aircraft is equipped with a full suite of meteorological instruments for temperature, pressure, humidity, wind 
speed and direction as well as an EPA certified Grimm Model 1.109 Aerosol  Spectrometer & 1.320 Nano Check which 

provides extremely precise size distributions within the size range 12 nm - T 32 µm in 43 size channels.

AIST-QRS-13-0004

TRLcurrent = 5

•Characterize	  surface	  variability	  of	  aerosol	  size	  distribu4on	  and	  
abundance	  across	  the	  ACE	  footprint 8/14

•Integrate	  aerosol	  spectrometer	  into	  the	  model	  aircra@ 10/14

•Fly	  at	  a	  range	  of	  loca4ons	  and	  4mes	  to	  demonstrate	  the	  ability	  to	  
characterize	  the	  aerosol	  size	  distribu4on	  and	  ver4cal	  profiles 6/15
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Small scale variability in 
the horizontal & 

vertical
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Automated traffic patterns, 
driverless cars routing
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Why else?
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Unprecedented levels of air pollution in Singapore and Malaysia in June led to respiratory illnesses, school closings, and 
grounded aircraft.  This year it was so bad that in some affected areas there was a 100 percent rise in the number of asthma 
cases, and the government of Malaysia distributed gas masks.

MODIS  Aqua July 21, 2013.

David Lary
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Air pollution in Ulaanbaatar, Mongolia
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PM2.5 Invisible Killer
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0.0001 μm 0.001 μm 0.01 μm 0.1 μm 1 μm 10 μm 100 μm 1000 μm

Pollen

Mold Spores

House Dust Mite Allergens

Bacteria

Cat Allergens

Viruses

Heavy Dust

Settling Dust

Suspended Atmospheric Dust

Cement Dust

Fly Ash

Oil Smoke

Smog

Tobacco Smoke

Soot

Gas Molecules

Decreased Lung Function < 10 μm 

Skin & Eye Disease < 2.5 μm 

Tumors < 1 μm 

Cardiovascular Disease < 0.1 μm 

Hair

Pin

Cell

0.0001 μm 0.001 μm 0.01 μm 0.1 μm 1 μm 10 μm 100 μm 1000 μm

PM10 particles

PM2.5 particles

PM0.1 ultra fine particles PM10-2.5 coarse fraction

0.1 mm 1 mm
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! 5!

Table!1.!PM!and!health!outcomes!(modified!from!Ruckerl*et*al.!(2006)).!

!!
Health*Outcomes!

Short9term*Studies* Long9term*Studies*
PM10! PM2.5! UFP! PM10! PM2.5! UFP!

Mortality* !! !! !! !! !! !!

!!!!All!causes! xxx!! xxx!! x! xx! xx! x!
!!!!Cardiovascular! xxx! xxx! x!! xx! xx! x!

!!!!Pulmonary! xxx! xxx! x! xx! xx! x!
Pulmonary!effects! !! !! !! !! !! !!

!!!!Lung!function,!e.g.,!PEF! xxx! xxx! xx! xxx! xxx! !!
!!!!Lung!function!growth! !! !! !! xxx! xxx! !!

Asthma!and!COPD!exacerbation! !! !! !! !! !! !!

!!!!Acute!respiratory!symptoms! !! xx! x! xxx! xxx! !!
!!!!Medication!use! !! !! x! !! !! !!

!!!!Hospital!admission! xx! xxx! x! !! !! !!
Lung!cancer! !! !! !! !! !! !!

!!!!Cohort! !! !! !! xx! xx! x!

!!!!Hospital!admission! !! !! !! xx! xx! x!
Cardiovascular!effects! !! !! !! !! !! !!

!!!!Hospital!admission! xxx! xxx! !! x! x! !!
ECG@related!endpoints! !! !! !! !! !! !!

!!!!Autonomic!nervous!system! xxx! xxx! xx! !! !! !!
!!!!Myocardial!substrate!and!vulnerability! !! xx! x! !! !! !!

Vascular!function! !! !! !! !! !! !!

!!!!Blood!pressure! xx! xxx! x! !! !! !!
!!!!Endothelial!function! x! xx! x! !! !! !!

Blood!markers! !! !! !! !! !! !!
!!!!Pro!inflammatory!mediators! xx! xx! xx! !! !! !!

!!!!Coagulation!blood!markers! xx! xx! xx! !! !! !!

!!!!Diabetes! x! xx! x! !! !! !!
!!!!Endothelial!function! x! x! xx! !! !! !!

Reproduction! !! !! !! !! !! !!
!!!!Premature!birth! x! x! !! !! !! !!

!!!!Birth!weight! xx! x! !! !! !! !!
!!!!IUR/SGA! x! x! !! !! !! !!

Fetal!growth! !! !! !! !! !! !!

!!!!Birth!defects! x! !! !! !! !! !!
!!!!Infant!mortality! xx! x! !! !! !! !!

!!!!Sperm!quality! x! x! !! !! !! !!
Neurotoxic!effects! !! !! !! !! !! !!

!!!!Central!nervous!system!! !! x! xx! !! !! !!
x, few studies; xx, many studies; xxx, large number of studies. 
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Hourly Measurements from 55 countries and more than 8,000 measurement sites from 1997-present
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Hourly Measurements from 55 countries and more than 8,000 measurement sites from 1997-present
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Virtual Sensors
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REMOTE SENSING, MACHINE LEARNING AND PM2.5 4

Random Forests, etc.) that can provide multi-variate non-linear
non-parametric regression or classification based on a training
dataset. We have tried all of these approaches for estimating
PM2.5 and found the best by far to be Random Forests.

B. Random Forests
In this paper we use one of the most accurate machine learn-

ing approaches currently available, namely Random Forests
[53], [54]. Random forests are composed of an ensemble of
decision trees [55]. Random forests have many advantages
including their ability to work efficiently with large datasets,
accommodate thousands of input variables, provide a measure
of the relative importance of the input variables in the re-
gression, and effectively handling datasets containing missing
data.

Each tree in the random forest is a decision tree. A decision
tree is a tree-like graph that can be used for classification
or regression. Given a training dataset, a decision tree can
be grown to predict the value of a particular output variable
based on a set of input variables [55]. The performance
of the decision tree regression can be improved upon if,
instead of using a single decision tree, we use an ensemble
of independent trees, namely, a random forest [53], [54]. This
approach is referred to as tree bootstrap aggregation, or tree
bagging for short.

Bootstrapping is a simple way to assign a measure of ac-
curacy to a sample estimate or a distribution. This is achieved
by repeatedly randomly resampling the original dataset to
provide an ensemble of independently resampled datasets.
Each member of the ensemble of independently resampled
datasets is then used to grow an independent decision tree.

The statistics of random sampling means that any given tree
is trained on approximately 66% of the training dataset and
so approximately 33% of the training dataset is not used in
training any given tree. Which 66% is used is different for
each of the trees in the random forest. This is a very rigorous
independent sampling strategy that helps minimize over fitting
of the training dataset (e.g. learning the noise). In addition, in
our implementation we keep back a random sample of data not
used in the training for independent validation and uncertainty
estimation.

The members of the original training dataset not used in a
given bootstrap resample are referred to as out of bag for
this tree. The final regression estimate that is provided by
the random forest is simply the average of the ensemble of
individual predictions in the random forest.

A further advantage of decision trees is that they can provide
us the relative importance of each of the inputs in constructing
the final multi-variate non-linear non-parametric regression
model (e.g. Tables II and III).

C. Datasets Used in Machine Learning Regression
1) PM2.5 Data: As many hourly PM2.5 observations

as possible that were available from the launch of Terra
and Aqua to the present were used in this study. For
the United States this data came from the EPA Air
Quality System (AQS) http://www.epa.gov/ttn/airs/airsaqs/

TABLE II
VARIABLES USED IN THE MACHINE LEARNING ESTIMATE OF PM2.5 FOR
THE MODIS COLLECTION 5.1 PRODUCTS FOR THE TERRA AND AQUA
DEEP BLUE ALGORITHM SORTED BY THEIR IMPORTANCE. THE MOST

IMPORTANCE VARIABLE FOR A GIVEN REGRESSION IS PLACED FIRST WITH
A RANK OF 1.

Terra DeepBlue

Rank Source Variable Type

1 Population Density Input
2 Satellite Product Tropospheric NO2 Column Input
3 Meteorological Analyses Surface Specific Humidity Input
4 Satellite Product Solar Azimuth Input
5 Meteorological Analyses Surface Wind Speed Input
6 Satellite Product White-sky Albedo at 2,130 nm Input
7 Satellite Product White-sky Albedo at 555 nm Input
8 Meteorological Analyses Surface Air Temperature Input
9 Meteorological Analyses Surface Layer Height Input
10 Meteorological Analyses Surface Ventilation Velocity Input
11 Meteorological Analyses Total Precipitation Input
12 Satellite Product Solar Zenith Input
13 Meteorological Analyses Air Density at Surface Input
14 Satellite Product Cloud Mask Qa Input
15 Satellite Product Deep Blue Aerosol Optical Depth 470 nm Input
16 Satellite Product Sensor Zenith Input
17 Satellite Product White-sky Albedo at 858 nm Input
18 Meteorological Analyses Surface Velocity Scale Input
19 Satellite Product White-sky Albedo at 470 nm Input
20 Satellite Product Deep Blue Angstrom Exponent Land Input
21 Satellite Product White-sky Albedo at 1,240 nm Input
22 Satellite Product Scattering Angle Input
23 Satellite Product Sensor Azimuth Input
24 Satellite Product Deep Blue Surface Reflectance 412 nm Input
25 Satellite Product White-sky Albedo at 1,640 nm Input
26 Satellite Product Deep Blue Aerosol Optical Depth 660 nm Input
27 Satellite Product White-sky Albedo at 648 nm Input
28 Satellite Product Deep Blue Surface Reflectance 660 nm Input
29 Satellite Product Cloud Fraction Land Input
30 Satellite Product Deep Blue Surface Reflectance 470 nm Input
31 Satellite Product Deep Blue Aerosol Optical Depth 550 nm Input
32 Satellite Product Deep Blue Aerosol Optical Depth 412 nm Input

In-situ Observation PM2.5 Target

Aqua DeepBlue

Rank Source Variable Type

1 Satellite Product Tropospheric NO2 Column Input
2 Satellite Product Solar Azimuth Input
3 Meteorological Analyses Air Density at Surface Input
4 Satellite Product Sensor Zenith Input
5 Satellite Product White-sky Albedo at 470 nm Input
6 Population Density Input
7 Satellite Product Deep Blue Surface Reflectance 470 nm Input
8 Meteorological Analyses Surface Air Temperature Input
9 Meteorological Analyses Surface Ventilation Velocity Input
10 Meteorological Analyses Surface Wind Speed Input
11 Satellite Product White-sky Albedo at 858 nm Input
12 Satellite Product White-sky Albedo at 2,130 nm Input
13 Satellite Product Solar Zenith Input
14 Meteorological Analyses Surface Layer Height Input
15 Satellite Product White-sky Albedo at 1,240 nm Input
16 Satellite Product Deep Blue Surface Reflectance 660 nm Input
17 Satellite Product Deep Blue Surface Reflectance 412 nm Input
18 Satellite Product White-sky Albedo at 1,640 nm Input
19 Satellite Product Sensor Azimuth Input
20 Satellite Product Scattering Angle Input
21 Meteorological Analyses Surface Velocity Scale Input
22 Satellite Product Cloud Mask Qa Input
23 Satellite Product White-sky Albedo at 555 nm Input
24 Satellite Product Deep Blue Aerosol Optical Depth 550 nm Input
25 Satellite Product Deep Blue Aerosol Optical Depth 660 nm Input
26 Satellite Product Deep Blue Aerosol Optical Depth 412 nm Input
27 Meteorological Analyses Total Precipitation Input
28 Satellite Product White-sky Albedo at 648 nm Input
29 Satellite Product Deep Blue Aerosol Optical Depth 470 nm Input
30 Satellite Product Deep Blue Angstrom Exponent Land Input
31 Meteorological Analyses Surface Specific Humidity Input
32 Satellite Product Cloud Fraction Land Input

In-situ Observation PM2.5 Target

detaildata/downloadaqsdata.htm and AirNOW http://www.
airnow.gov. In Canada the data came from http://www.
etc-cte.ec.gc.ca/napsdata/main.aspx. In Europe the data came
from AirBase, the European air quality database main-
tained by the European Environment Agency and the Euro-
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Long-Term Average 1997-present
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Long-Term Average 1997-present

Wearable Sensors
Mobile Sensors
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Four Corners Power Plants

Sonoran Dessert
Los Angeles Area

Central Valley

Common Fire Area
Close Ups Showing Good Agreement With Observations

Alaska

(a)

(b) (c)

(d)

Great Salt Lake Desert
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This is a BigData Problem of 
Great Societal Relevance

• Collecting data in real time from national and 
global networks requires bandwidth.

• With the next generation of wearable sensors and 
the internet of things this data volume will 
rapidly increase.

• A variety of applications enabled by BigData, 
higher bandwidth and cloud processing.

• Future finer granularity and two way 
communication will dramatically increase the size 
of the data bringing air quality to the micro scale, 
just like weather data.

Time Taken
10 Mbps 20 Mbps 50 Mbps 1 Gbps

40 TB training data
4 Gb update

185 days 93 days 37 days 1 day 21 hours
54m 27m 11m 32s
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Automated traffic patterns, 
driverless cars routing
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30

VA Decision Support Tools

More Than 40 Data Products from In-situ Observations, NASA Earth Observations, Earth System 
Models, Population Density & Emission Inventories 

Personalized Alerts Dr. Watson
Staffing & Resource 

Management

Machine Learning

Daily Global Air 
Quality Estimates

NASA Earth 
Observation Data

NASA Earth System 
Model Products

Population Density and 
Other Related Products

ER Admissions
All ICD Codes

All Prescriptions

Machine 
Learning

Machine 
Learning

THRIVE Medical 
Environment Analytics 

Engine
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Happy Day!
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Street View
Pollution View
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