

LABORATORY

S. J. Ben Yoo

Department of Electrical and Computer Engineering University of California, Davis <u>sbyoo@ucdavis.edu</u>

http://sierra.ece.ucdavis.edu

In collaboration with Lockheed Martin Advanced Technology Center, Palo Alto, CA, 94304 USA VERSITY OF CALIFORNIA

NASA ESTO Grant # NNX16AP60G

LABORATORY

NETWORKING SYSTEMS

Future Imaging Systems with Low SWaP

Orders of Magnitude SWaP Reduction Achievable

SPIDER: segmented planar imaging detector for electro-optical reconnaissance

AND COMPUTER

6/19/2018

Interferometric Imaging with Photonic Integrated Circuits

Interferometric Imaging

- Light source at infinity at $\alpha = 0$
- Intensity pattern ~ 1+cos as a function of α, period length: λ/B
- OPD > coherence length
 ⇒ fringes disappear

Light source at angle $lpha_0$

 \Rightarrow fringe pattern shifts accordingly

Interferomic Telescopes

(First and last picture of a movie)

Figure Courtesy of Andreas Glindemann

LABORATORY

AL AND COMPUTER

ENGINEERING

6/19/2018

Interferometric Imaging with Photonic Integrated Circuits

LABORATORY

NETWORKING SYSTEMS

SPIDER: segmented planar imaging detector for electro-optical reconnaissance

Photonic Integrated Circuits

Objectives

- Planar "flat panel" telescope with <u>NO</u> large optics
- Large field of view with <u>NO</u> precision gimbals for line of sight steering

Concept Description

- Light input by large area lenslet array "wired" into interferometer channels using nanophotonics (leverages commercial high density optical interconnect 3D computer chip technology)
- Scalable to larger apertures using fiber coupling of multiple interferometer chips

AL AND COMPUTER

ENGINEERING

SPIDER with PICs

UCDAVIS

ENGINEERING

ELECTRICAL AND COMPUTER

6/19/2018

Interferometric Telescope

NEXT GENERATION

LABORATORY

NETWORKING SYSTEMS

Interferometric Imaging with **Photonic Integrated Circuits**

5

1st Gen SPIDER PIC (10-Spatial-Channel × 3 Spectral Band)

UCDAVIS ELECTRICAL AND COMPUTER ENGINEERING

1st Gen SPIDER PIC (10-Spatial-Channel × 3 Spectral Band)

- Layer#1: waveguide
- Layer#2: heater
- Layer#3: electrode
- Layer#4: trench
 - Layer#11: waveguide keep out

ELECTRICAL AND COMPUTER

UCDAVIS

ENGINEERING

DARPA funded work 6/19/2018

Interferometric Imaging with Photonic Integrated Circuits

1st Gen SPIDER PIC

EXT GENERATION ——	
ETWORKING SYSTEMS	
BORATORY	_7%%

6/19/2018

Photonic Integrated Circuits

8

NETWORKING SYSTEMS

LABORATORY

2nd Gen SPIDER Concept Design – Interferometry

6/19/2018

Interferometric Imaging with Photonic Integrated Circuits

CTRICAL AND COMPUTER

ENGINEERING

2nd Gen SPIDER Photonic Integrated Circuit Design

NEXT GENERATION ______

6/19/2018

Interferometric Imaging with Photonic Integrated Circuits

UCDAVIS ELECTRICAL AND COMPUTER ENGINEERING

LABORATORY

NETWORKING SYSTEMS

2nd Gen SPIDER PIC (12 baseline, 18 spectral bin) fabricated w/ CMOS Compatible Process @ UC Davis

Photograph

Multilayer 150nm/50nm/150nm Si₃N₄ PIC Platform for the 2nd Gen SPIDER Design

On-Chip Spectrometers: Arrayed Waveguide Gratings

NETWORKING SYSTEMS

LABORATORY

Wafer-scale fabrication of 2ND Gen SPIDER PIC

150 mm wafer-scale fabrication

22 mmx 22 mm die

High-Resolution 2ND Gen SPIDER PIC

100 mm baseline

LABORATORY

NETWORKING SYSTEMS

SPIDER Imaging Simulation Example

Simulation Parameters

Parameter	Value
Waveband	$\lambda = 0.5-0.9 \ \mu m$
Object distance	R = 60 km
Longest baseline	$B_{\text{max}} = 120 \text{ mm}$
Lenslet diameter	$D_{\text{lenslet}} = 5 \text{ mm}$
Lenslets per PIC Card	14
PIC cards	37
Number of spectral channels	$K = 10 \ (\Delta \lambda = 40 \ \text{nm})$
Detector quantum efficiency	$\eta = 0.7 \text{ e}^{-/\text{photon}}$
Detector read noise	$\sigma_0 = 8 e^{-1}$
Integration time	$\tau = 1 \sec \theta$

Spatial Domain Sampling

Imaging Object

0.16 0.12 0.08 0.04 O Solar Panel Satellite Bus 0.04 O Antenna O Gray World O Solar Panel Satellite Bus O Solar Panel O Solar Panel

Provided by Lockheed Martin

6/19/2018

Interferometric Imaging with Photonic Integrated Circuits

Normalized Spectrum

16

ELECTRICAL AND COMPUTER ENGINEERING

LABORATORY

NETWORKING SYSTEMS

Simulation Result

SPIDER simulation Result

Panchromatic Imager simulation Result

2

Spatial Frequency [cycles/m]

(b)

3

Provided by Lockheed Martin

UCDAVIS ELECTRICAL AND COMPUTER ENGINEERING

6/19/2018

Interferometric Imaging with Photonic Integrated Circuits

0

17

4

NA

NEXT GENERATION

LABORATORY

NETWORKING SYSTEMS

Experimental Results for USAF Bar Target

Computer simulation of experiment

Expected Image

Sparse Fourier sampling artifacts (polar sampling is $\Delta \theta = 10 \text{ deg}$)

• Experimental results

nillimeters

Image is blurred due to wobble in the testbed object rotation stage (this causes phase errors)

Apply linear phase corrections $(for each \theta)$ by comparing with simulated data from above

Corrected Image

Provided by Lockheed Martin

UCDAVIS ELECTRICAL AND COMPUTER ENGINEERING

6/19/2018

Interferometric Imaging with Photonic Integrated Circuits

18

0

LABORATORY

Next Steps for 2nd Gen SPIDER PIIT

6/19/2018

Interferometric Imaging with **Photonic Integrated Circuits**

ECTRICAL AND COMPUTER

ENGINEERING

3rd Generation SPIDER PIIT ?

3D Photonic-Electronic-Integrated Circuits

Photo and SEM view of U-shape coupler: (a) Photograph of 3D PIC (b) 45° tiled view SEM pictures of an etched 45° reflector. (b), (c) SEM of 45° Reflector.

Ð.

UCDAVIS

ENGINEERING

ELECTRICAL AND COMPUTER

6/19/2018

Interferometric Imaging with Photonic Integrated Circuits

LABORATORY

NETWORKING SYSTEMS

Summary

- Design, Simulations, and Demonstration of SPIDER PIIT
- Multi-Layer CMOS Compatible SPIDER PICs with 18 spectral bin 12 baseline interferometers consisting of
 - Interlayer coupler with various splitting ratios and low loss
 - Dual arm AWG interferometric operation
 - MMI for interferometric imaging.
- Reduction of Size, Weight, Power by 100x-1000x
- Concept Scalable to Very Large-Scale Astronomical Observatories
- Possibility of Transition to Commercial Systems
- Future generations of SPIDER PICs in concept developments involving 3D Electronic-Photonic-Integrated Circuits

AND COMPUTER