

NASA Earth Science Technology Forum ESTF 2018 June 12-14, 2018 Silver Spring, MD

Tropospheric Water and Cloud ICE (TWICE) 6U-Class Satellite Instrument: Enabling Observations of Cloud Ice Particle Sizes as well as Temperature and Humidity Profiles in the Upper Troposphere

Steven C. Reising¹, Pekka Kangaslahti², Jonathan Jiang², Erich Schlecht², Mehmet Ogut¹, Xavier Bosch-Lluis^{1,2}, Yuriy Goncharenko¹, Braxton Kilmer¹, Anders Skalare², Richard Cofield², Nacer Chahat², Sharmila Padmanabhan², Shannon T. Brown², William Deal³, Alex Zamora³, Kevin Leong³, Sean Shih³, and Gerry Mei³

¹Colorado State University, Fort Collins, CO ²NASA Caltech/Jet Propulsion Laboratory, Pasadena, CA ³Northrop Grumman Aerospace Systems, Redondo Beach, CA, USA

Tropospheric Water and Cloud ICE (TWICE) Scientific Motivation

TWICE Addresses Earth Science Decadal Survey:

- Science Question W-9: What processes determine cloud microphysical properties and their connections to aerosols and precipitation?
- Science Question C-5 A: How do changes in aerosols (including their interactions with clouds which constitute the largest uncertainty in total climate forcing) affect Earth's radiation budget and offset the warming due to greenhouse gases?

TWICE Scientific Objectives:

- Perform global observations of ice particle size information and water vapor profiles throughout the diurnal cycle
- Current understanding of upper tropospheric / lower stratospheric processes in general circulation models (GCMs) is limited. Such measurements can improve both weather and climate predictions as well as knowledge of their uncertainties.

Tropospheric Water and Cloud ICE (TWICE) Scientific Motivation

Aerosols and Clouds

- Clouds represent arguably the largest uncertainty in climate predictions.
- Clouds in polluted environments tend to have smaller water droplets and ice crystals than those in cleaner environments ("first indirect effect").
- Polluted clouds are less likely to generate rainfall, increasing the cloud water content ("second indirect effect") and are brighter (have higher albedo) than clean clouds

TWICE Radiometer Instrument

In tandem with other instruments providing aerosol information, the TWICE instrument:

- Can provide cloud ice particle size information in both polluted and clean environments
- Help to determine the influence of aerosol pollution on cloud particle size spectrum

TWICE Cloud Ice Particle Size Information

Sub-millimeter wave radiometry fills the sensitivity gap between infrared (cloud tops) and microwave (lower troposphere) measurements

- NASA's A-Train provides limited cloud particle size information.
 - CloudSat: 94-GHz radar (particle sizes > 1 mm)
 - Aqua's MODIS: 10-μm infrared radiometer (particle sizes < 100 μm)
- Sub-millimeter wave provides ice particle size information between ~50 μm and ~1000 μm.
 <u>670</u> 310 240 GHz
- High atmospheric opacity at submillimeter wavelengths allows the measurement of ice in clouds above the freezing level through *scattering*.
- Measured brightness temperatures decrease due to ice particle scattering at sub-mm-wave frequencies.
- Modeled brightness temperature decrease due to scattering shown at right; adapted from S. Buehler et al., QJRMS, 2007 for ICI MetOp SG-B.

TWICE Water Vapor Profiling

- Measurements near water vapor absorption lines ²⁰ provide vertical profile 15 information through pressure broadening.
- 183 GHz and 380 GHz were chosen to retrieve water vapor in the troposphere and upper troposphere / lower stratosphere (UTLS).
- To constrain the water vapor retrievals, 118 GHz channels measure temperature information using the O_2 absorption line.

[Jiang et al., *Earth & Space Science, 4, doi:10.1002/2017EA000296, 2017*]

Retrieval of Cloud Ice, Humidity and Temperature Retrieval from TWICE

- We have developed and applied a Bayesian-based simulation and retrieval system [Evans et al., 2002; 2012] for TWICE frequencies. Simultaneous retrievals are performed for these quantities:
- Cloud ice particle size (D_e) , ice water content (IWC), water vapor content (H2O), and relative humidity (RH) profiles.
- Results show that the TWICE instrument is capable of retrieving ice particle size in the range of ~50 μ m to 1000 μ m with better than 50% uncertainty, filling the gap in ice cloud particle size retrieval using existing spaceborne remote sensing modalities.
- Uncertainties for other TWICE retrievals are < 50% for IWC and < 20% for H₂O.

[Jiang et al., *Earth & Space Science*, *4*, doi:10.1002/2017EA000296, 2017]

Tropospheric Water and Cloud Ice Instrument Block Diagram

S. C. Reising et al., A3P7

rado

NORTHROP GRUMMAN

Knowledge to Go Places

TWICE Instrument Measurement Frequencies and Specifications

Quasi-Window Frequencies (3) for Cloud Ice Particle Sizing								
Temperature	and Humidity	Sounding	Frequenci	es				
			\checkmark	\checkmark			\downarrow	
Parameter								
Channel Center Frequency		118 GHz sounder	183 GHz sounder	240 GHz	310 GHz	380 GHz sounder	670 GHz	
Channel Bandwidth		Offset frequencies from +10 MHz to +8.5 GHz	Offset frequencies from -10 MHz to -8.5 GHz	10 GHz	10 GHz	Offset frequencies from -10 MHz to -8.5 GHz	20 GHz	
Passband Ripple (max)		±2dB	±2dB	± 2 dB	± 2 dB	±2dB	± 5 dB	
System Noise Figure (goal: minimize)		≤ 7 dB	≤ 7 dB	≤ 7 dB	≤ 7 dB	≤ 7 dB	≤ 13 dB	
NEDT (τ = 1s) (K)		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
DC Power (W)	Proposed Spec.	8		0.6		4	0.6	
	CBE	4.53		0.35		2.31	0.54	
Mass (kg)	Proposed Spec.	0.6		0.5		0.3	0.5	
	CBE	0.55		0.1		0.3	0.09	

Mass and Power Consumption for each TWICE Subsystem

Subsystem	Mass (kg)	Power (W)	
118-183 GHz Sounder	0.55	4.53	
240 GHz & 310 GHz Radiometers	0.1	0.35	
380 GHz Sounder	0.3	2.31	
670 GHz Radiometer	0.05	0.27	
850 GHz Radiometer	0.05	0.27	
Back-end Board	0.13	0.73	
Power Regulation Board	0.13	3.00	
C&DH Housing	0.50		
Optics	0.40	-	
Calibration Target/Reflector	0.71	-	
Scanning Motor	0.33	3.00	
Totals	3.24	14.46	

Millimeter-wave Radiometers for NORTHINOP GRUMMAN Temperature & Water Vapor Sounding

S. C. Reising et al., A3P7

High-frequency Airborne Microwave and Millimeter-wave Radiometer

Temperature and humidity sounders near 118 and 183 GHz, respectively, have been successfully demonstrated as part of the HAMMR instrument for 68 flight hours aboard Twin Otter aircraft. Flights were conducted over inland water bodies as well as nearly the entire U.S. west coast.

High-Frequency Millimeter- High-Frequency Millimeter wave Sounding Channels (118 and 183 GHz)

Wave Window Channels (90, 130 and 168 GHz)

Low-Frequency **Microwave channels** (18.7, 23.8 and 34 GHz)

S. C. Reising et al., A3P7

ESTF 2018, Silver Spring, MD

670 GHz Integrated Receiver Measured Response

Integrated 670 GHz Receiver

- 10.6 dB measured noise figure
- 270 mW DC Power
- First stage bias is "chopped" to reduce 1/f noise
- 3-LNAs and 2 bandpass filters
- GaAs Schottky Detector (VDI)
- Integrated Video Circuit

S. C. Reising et al., A3P7

ESTF 2018, Silver Spring, MD

Demonstration of 1/f Noise Mitigation

S. C. Reising et al., A3P7

ESTF 2018, Silver Spring, MD

Integrated Receiver:

- 240 GHz direct detection receiver
- 310 GHz direct detection receiver
- 380 GHz Heterodyne receiver
- Highly compact with single horn antenna
- Front-end LNA-based receiver (before 380 GHz mixer)
- Integrated diplexers and bandpass filters

June 12, 2018

118 and 183 GHz Receiver

- Feed horn machined inside the split block with diplexer for 118 and 183 GHz
- 118 GHz and 183 GHz receiver modules

- LO multipliers for receiver modules
- DROs provide LO signals to multipliers

S. C. Reising et al., A3P7

ESTF 2018, Silver Spring, MD

June 12, 2018

850 GHz LNA Readiness

20

Noise Figure [dB]

0 +-835

840

845

- Adding a channel near 883 GHz would substantially improve sensitivity to small cloud ice particles (down to ~20 μm).
- Northrop Grumman has developed and demonstrated an 850 GHz LNA under other projects.

S. C. Reising et al., A3P7

ESTF 2018, Silver Spring, MD

LNA Noise Figure

855

860

865

TWICE Instrument for 6U-Class Satellites

- Four frequency bands in one Gregorian quasi-optical subsystem
- Conical scanning of the Earth scene with 9.5-cm primary reflector

S. C. Reising et al., A3P7

ESTF 2018, Silver Spring, MD

June 12, 2018

TWICE Instrument Quasi-Optics Design

- Large focal plane enabled by oversized secondary reflector.
- Feed horns angled to minimize the total area of the antenna beams on the primary reflector.
- Four feed horns, all fabricated inside frontend modules to minimize waveguide loss:
 - 850 GHz
 - 670 GHz
 - 230–390 GHz
 - 118–183 GHz

TWICE Scanning and Calibration Strategy

TWICE Sampling Time and Radiometric Resolution

Frequency	Cross-	Number of	Sampling T	Radiometric	
(GHz)	Track Footprint Size (km)	Footprints per Scan (N _{FP})	Radiometer Footprint Time	Footprint Sampling Time	Resolution Per Pixel (K)
118	19	46	10.31	8.00	0.12
183	12	72	6.51	8.00	0.15
240	13	67	7.06	4.00	< 0.1
310	10	87	5.43	4.00	< 0.1
380	8	108	4.34	4.00	0.35
670	5	173	2.71	4.00	0.3
850	5	173	2.71	4.00	0.4

- The samples acquired by the ADC during one footprint sampling time are averaged to yield one sample per footprint.
- The receivers centered at 240, 310, 670 and 850 GHz have wide bandwidths that improve radiometric resolution.

- The Tropospheric Water and Cloud ICE (TWICE) is a 6U-Class satellite instrument under development to enable global measurements of upper-tropospheric/lower stratospheric (ULTS) cloud ice particle size and water vapor profile information at a variety of local times.
- These global measurements are expected to improve currently limited understanding of general circulation model (GCM) cloud processes, improving both climate predictions and knowledge of their uncertainty.
- Cloud ice particle sizing is needed in both clean and polluted clouds to study the indirect effects of aerosols throughout the diurnal cycle.
- TWICE will perform measurements at 16 frequencies from 118 GHz to 850 GHz to yield cloud ice particle size information, total ice water content and water vapor profiles.
- Conical scanning will preserve the polarization basis and enable end-toend calibration at all 16 frequencies using cold sky and an ambient target.
- The TWICE instrument will meet the size, weight and power (SWaP) requirements for deployment in a 6U-Class satellite.