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Temporal Experiment for Storms 

and Tropical Systems (TEMPEST)

TEMPEST addresses 2017 Earth Science Decadal Survey Question W-4:

• Why do convective storms, heavy precipitation, and clouds occur exactly when 

and where they do?

• Provides global, temporally-resolved observations of cloud and precipitation 

processes using a 6U-Class satellite constellation

• Constrains weather and climate models using millimeter-wave radiometer 

observations
• TEMPEST-D technology demonstration 

began in August 2015 as a partnership 

among CSU, JPL and BCT.

• Delivered 6U flight system with 

integrated payload to NanoRacks for 

launch integration on March 22, 2018.

• NASA CubeSat Launch Initiative (CSLI)

• Launched by Orbital ATK on CRS-9 from 

NASA Wallops to ISS on May 21, 2018

• Planned deployment into orbit by 

NanoRacks from JEM in July/August 2018
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• Infrared brightness temperatures (middle row, available from GEO) 

show cloud top temperatures, locations and morphology.

• Onset of precipitation clearly detected at millimeter-wave frequencies

on TEMPEST constellation, including 165 GHz (bottom row).

• TEMPEST minimum spatial resolution of 25 km is shown (circles).
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Temporal Development of Ice 

in Cloud-Scale Models

• Modeled brightness temperatures at the 

five TEMPEST frequencies with 25-km 

spatial resolution

• Simulations compare different rates of 

supercooled water droplets collecting on 

ice crystals (riming efficiency).

• Rate varies from baseline (black) to 

twice (red) and half (blue).

• Measurable difference between curves 

is 4 K or greater in 5 minutes at onset of 

ice formation. Instrument precision 

requirement is 1 K in 5 minutes.

• Ice remaining in clouds after 

precipitation has substantial effects on 

climate.  Residual ice can be compared 

to W-band radar observations from 

NASA’s CloudSat or ESA’s EarthCARE.
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Global Time-Resolved Observations 

of Cloud & Precipitation Processes

• During a future one-year mission, 

TEMPEST constellation could 

make more than 3,000,000 time-

resolved observations of 

precipitation (> 1 mm/hr), including 

100,000+ deep-convection events

• Could perform more than 50,000 

precipitation observations 

coincident (within 30 minutes) with 

NASA/JAXA Global Precipitation 

Mission (GPM) core satellite

• Assumes nominal TEMPEST orbit 

for deployment from ISS at 400-km 
altitude and 51.6° inclination. 

• Precipitation estimates from 

AMSR-E satellite radiometer data 

with oceanic observations only.

• TEMPEST mission observations will be 

complementary to NASA CYGNSS and 

NASA TROPICS Earth Venture missions.
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Simulated Observations of TEMPEST 

Constellation over Hurricane Gonzalo

From WRF model of Hurricane Gonzalo in Oct. 2014
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• Builds on CSU 1D-Var (Duncan and 

Kummerow, 2016); observed brightness 

temperatures balanced against a-priori 

knowledge to find most likely state vector

• Retrieves water vapor profile (3 EOFs) and 

cloud liquid water path (LWP), with option 

to retrieve cloud ice water path (IWP)

• View-angle-dependent measurement error 

covariance matrix (Sy) greatly reduces 

biases near the edge of the swath

• Applicable to both TEMPEST-D risk 

reduction and improved TEMPEST-D vs. 

MHS single and double difference 

validation activities.
1D-Var retrieval of total precipitable

water, liquid water path, and ice water

path from the Microwave Humidity

Sounder (MHS)

CSU 1D-Var Retrieval for TEMPEST-D 

and Cross-Calibration with MHS
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TEMPEST-D Demonstration:

Motivation and Objectives

• Demonstrate capability of 6U CubeSats to contribute to NASA Earth 

Science measurements in a 90-day technology demonstration mission

• Reduce risk, cost and development time for future measurements of Earth 

science processes using CubeSat constellations

• Raise the technology readiness level (TRL) of the TEMPEST mm-wave 

radiometer instrument from 5 to 9 (scanning reflector to 7)

• Provides the first in-space demonstration of a millimeter-wave radiometer 

based on an InP HEMT low-noise amplifier front-end (LNA) for Earth 

Science measurements.

Success Criteria:

• Demonstrate feasibility of differential drag maneuvers to achieve required 

time separation of 6U-Class satellites in same orbital plane

• Demonstrate cross-calibration between TEMPEST mm-wave radiometers 

and NASA/JAXA Global Precipitation Mission Microwave Imager and/or 

Microwave Humidity Sounder (MHS, on two NOAA satellites and two 

ESA/EUMETSAT satellites) with 2 K precision and 4 K accuracy.
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TEMPEST-D 6U-Class BCT 
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TEMPEST-D Instrument:

Radiometer Calibration

• Five-frequency millimeter-wave radiometer measures Earth scene over 

±45° nadir angles, for an 825-km swath width from a nominal orbit altitude 

of 400 km. Spatial resolution ranges from 13 to 25 km for 89 to 182 GHz.

• TEMPEST-D performs two-point end-to-end calibration every 2 sec. by 

measuring cosmic microwave background at 2.73 K (“cold sky”) and 

ambient blackbody calibration target each revolution (scanning at 30 RPM). 
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Flight Model Radiometer Instrument 

Bench-top Integration at JPL
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Thermal Vacuum Testing Results 

for Flight Instrument (Jul. 2017)

Gain measured while viewing blackbody calibration target at chamber 

temperature varying from -25°C to +60°C.
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Instrument Performance during 

Spacecraft TVac Testing (Jan. 2018)

Radiometric Resolution vs. 

Instrument Temperature

13

Measured radiometric resolution values 

meet total noise requirements of 1.4 K for all 

five millimeter-wave radiometer channels.

Instrument Temperature vs. Time
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Radiometer Instrument Technical 

Resources Summary

Allocation

CBEAllocation
MARGIN


100

*Change due to titanium standoff replacement with aluminum

**Includes spacecraft state-of-health telemetry

All excess margin can now be released to the spacecraft. 

22
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TEMPEST-D Flight Unit

Integrated at BCT (Feb. 2018)
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Cold 

Space

TEMPEST-D Mission:

Recent Milestones

• Ground compatibility testing completed at NASA Wallops on Feb. 16, 2018

• Workmanship vibration penalty testing completed on Feb 22, 2018.

• Thermal balance penalty testing completed on Mar. 2, 2018.

• FCC granted radio communication license on Mar. 8, 2018

• Primary Comms: Cadet-U to NASA Wallops, UHF ~450 MHz Uplink and 

~470 MHz Downlink

• Secondary Comms: S-band Globalstar to MEO:  ~1.6 GHz

• Successfully integrated into NanoRacks 6U Deployer along with CubeRRT

on Mar. 22, 2018.

• Launched to ISS on OA-9 on May 21, 2018

NASA Wallops 18-m dish
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Final Installation in Deployer at 

NanoRacks in Houston, Mar. 2018

TEMPEST-DCubeRRT
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Launched on Orbital ATK OA-9 from 

NASA Wallops to ISS on May 21, 2018

Photo Credit: NASA
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Orbital ATK Cygnus Arrived at ISS 

on May 24, 2018

Photo Credit: NASA
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Summary

• TEMPEST-D mission to demonstrate capability of 6U CubeSats to perform 

global temporally-resolved observations of cloud and precipitation processes

• Reduces risk, cost and development time for future CubeSat constellation 

missions to perform repeat-pass radiometry to measure temporal signatures 

of atmospheric processes

• Provides first in-space technology demonstration of a millimeter-wave 

radiometer based on an InP HEMT low-noise amplifier front-end for Earth 

Science measurements

• Demonstrates feasibility of differential drag maneuvers to achieve required 

time separation of 6U CubeSats in the same orbital plane

• Demonstrates cross-calibration of TEMPEST radiometers with NASA/JAXA 

GPM Microwave Imager and/or MHS with 2 K precision and 4 K accuracy

• Demonstrates capability for rapid development of CubeSats for Earth 

science, about 2.5 years from project start to delivery for launch integration

• Launched on Orbital ATK CRS-9 from NASA Wallops to ISS on May 21, 2018

• Planned for deployment into orbit from ISS by NanoRacks in July/Aug. 2018
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Thank you for your kind attention.  Many thanks to NASA 

Earth Ventures for their support and to the NASA Earth 

Science Technology Office for program management.


