

Small, Low-mass Radar Components for Wideband Passive Radar Reflectivity Measurements

NASA ACT Program Managers

Parminder Ghuman and Robert Connerton

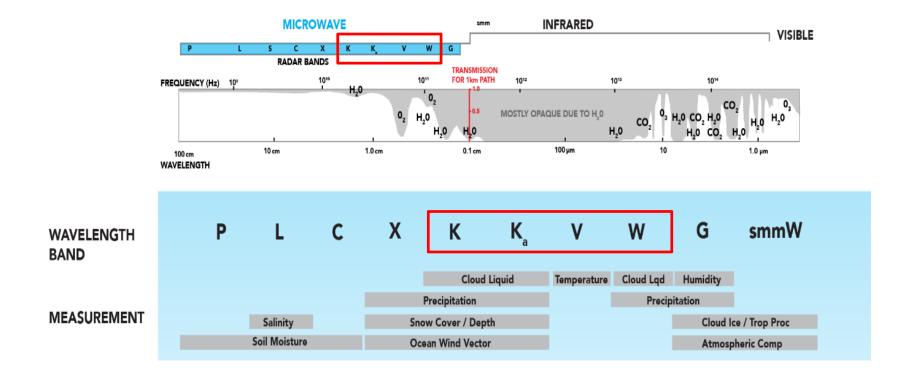
Grant # NNX15AB39G, 80NSSC18K0118

June, 2018

Presenter: Mr. Douglas Linkhart (dlinkhart@mtmgx.com) Principal Engineer, Metamagnetics, Inc.

Circulator Agenda

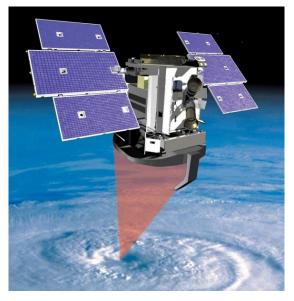
- Earth Science Context
- Circulator Applications
- Circulator Improvements
- Ongoing Circulator Development


2017-2027 Decadal Survey for Earth science and Applications from Space (ESAS 2017)

Clouds, Convection, and Precipitation:

- Radars with multi-frequency passive microwave Radiometers
- Designated priority observing system for coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes including cloud feedback
- Radar reflectivity measurements at multiple frequencies provide a means to derive mean particle diameter, along with estimates of terminal fall speed and density

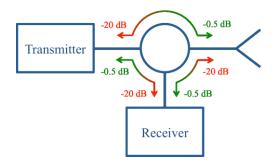
Radar Frequency Response & Earth Science Goals



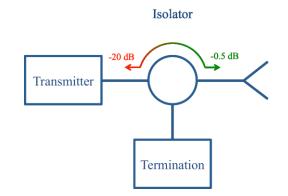
4 Earth Science Technology Forum (ESTF) - 2018

RADAR Observations of Clouds, Convection, and Precipitation

- Observation of ice masses
- Particle fall velocities
- Vertical air motions
- Surface precipitation rates
- Precipitation efficiency
- Convective mass fluxes
- Sedimentation rates
- Assess low and high cloud feedback
- Assist with seasonal/interannual climate variability and its prediction
- Observe processes at core of severe/extreme weather



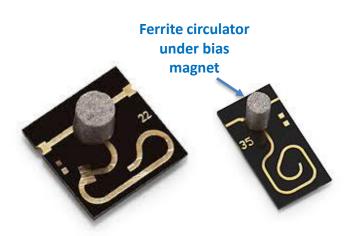
CloudSat uses W-band radar to investigate cloud cover

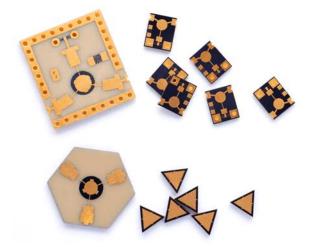


Circulators in Radars & Communications Systems

Duplexer

Circulator configured as duplexer to allow Tx and Rx through a shared aperture, enabling Simultaneous Transmission and Reception (STAR)

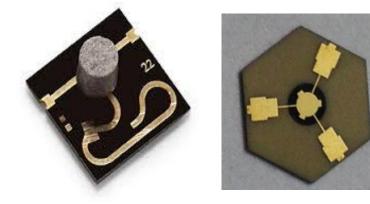

Circulator configured as isolator to isolate Tx from load impedance variation


Radar System Challenges

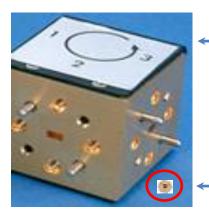
Available Circulators for Radar are Large/Massive due to External Magnets

- Circulators are passive control components that are made using ferrite materials
- Traditional circulators are biased with large magnets
- For phased array antennas operating at high frequencies, small circulators are needed, but historically have not been available

COTS microstrip isolators at K_U -and K_A -bands



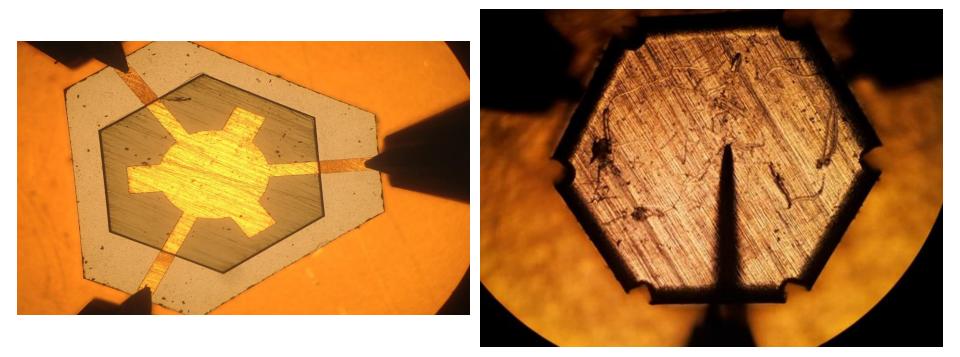
K_A-band Self-Biased Isolators & Circulators


7 Earth Science Technology Forum (ESTF) - 2018

Metamagnetics Small, Low-Mass, Self-Biased Circulators for Multiple Radar Frequencies

Typical circulator (L) has large permanent magnet, self-biasing circulator has no external magnet (R)

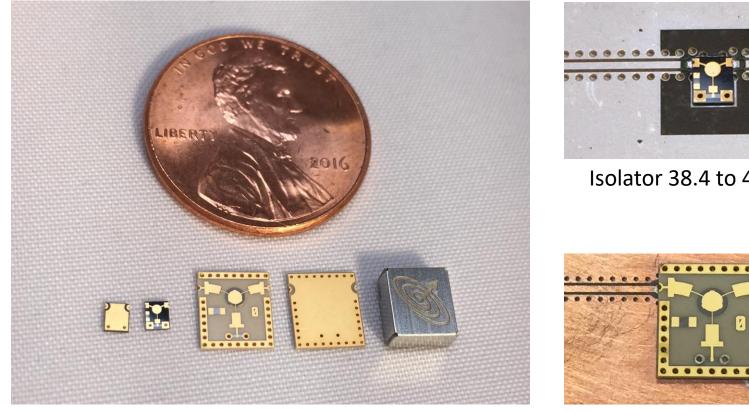
- Typical Circulator


Size comparison between typical W-band waveguide circulator (left) and a self-biased circulator (right, inside of red circle)

Self biased Circulator

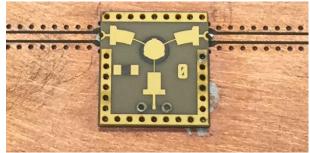
8 Earth Science Technology Forum (ESTF) - 2018

K_A-band Circulator Development at Metamagnetics


Progression of K_A-band Circulator Development

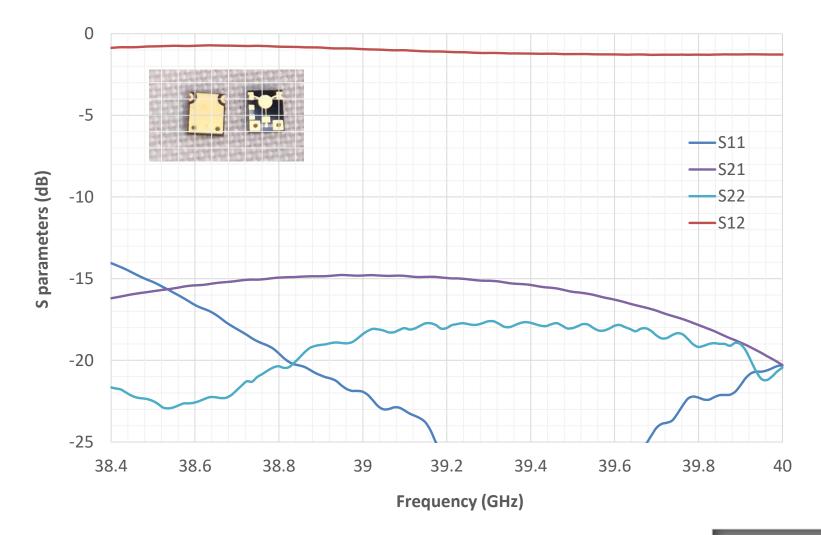
Circulator Performance Metrics Summary							
<u>Parameter</u>	Program Goals	<u>Iteration I</u>	<u>Iteration II</u>	<u>Iteration III</u>	<u>Iteration IV</u>		
Insertion Loss	<u>0.3 – 0.5 dB</u>	<u>≤ 1.2 dB</u>	<u>≤1.3 dB</u>	<u>≤ 0.8 dB</u>	<u>< 0.5 dB</u>		
<u>Return Loss</u>	<u>> 20 dB</u>	<u>> 18 dB</u>	<u>> 14.5 dB</u>	<u>> 20 dB</u>	<u>> 20 dB</u>		
<u>Isolation</u>	<u>> 20 dB</u>	<u>> 14 dB</u>	<u>> 19.5 dB</u>	<u>> 21 dB</u>	<u>> 21 dB</u>		
<u>Operating</u> <u>Temperature</u>	<u>-25 – +70°C</u>	<u>-25 – +75°C</u>	<u>-25 – +75°C</u>	<u>-25 – +75°C</u>	<u>-25 - +75°C</u>		
<u>Storage</u> Temperature	<u>-40°C – +70°C</u>	<u>-40°C – +75°C</u>	<u>-40°C – +70°C</u>	<u>-40°C – +70°C</u>	<u>-40°C – +70°C</u>		
<u>Size</u>	Not specified	<u>2.0 x 2.0 x 0.3 mm</u>	<u>2.0 x 2.0 x 0.3</u> mm	<u>ø2.4 x 0.7 mm</u>	<u>ø2.4 x 0.7 mm</u>		
<u>Power</u> (Peak and/or Average)		<u>8 watts</u> (1.56 % duty cycle)	8 watts (1.56 % duty cycle)	8 watts (1.56 % duty cycle)	8 watts (1.56 % duty cycle)		
<u>Bandwidth</u>	<u>0.28 %</u> <u>± 50 MHz</u>	<u>0.28 %</u> <u>± 50 MHz</u>	<u>0.28 %</u> <u>± 50 MHz</u>	<u>0.28 %</u> <u>± 50 MHz</u>	<u>0.28 %</u> <u>± 50 MHz</u>		
Center Frequency	<u>35.55 GHz</u>	<u>34 GHz</u>	<u>35.55 GHz</u>	<u>35.55 GHz</u>	<u>35.55 GHz</u>		

¹⁰ Earth Science Technology Forum (ESTF) - 2018

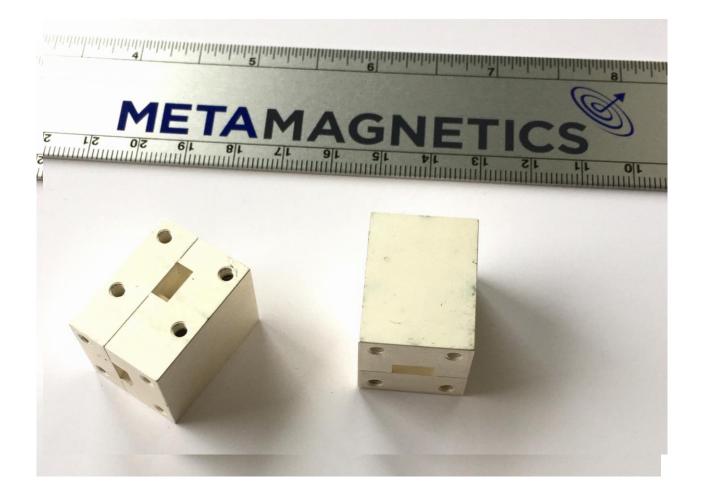

Surface Mountable Commercial Isolator Product Line

Designed for PCB mounting using industry-standard solder reflow processes. EM shielding optional.

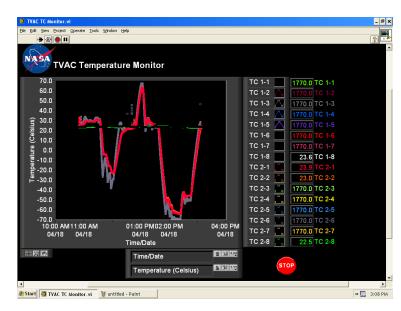
¹¹ Earth Science Technology Forum (ESTF) - 2018

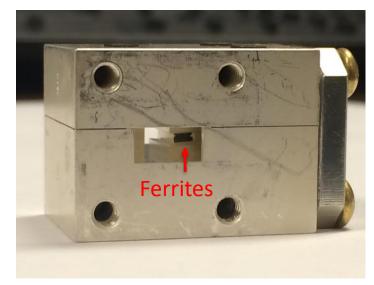

Isolator 38.4 to 40 GHz

Isolator 26.6 to 29.2 GHz

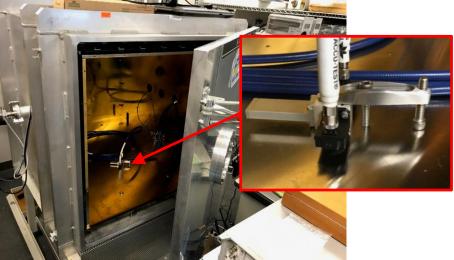

Circulator Performance at 38.4 – 40 GHz

¹² Earth Science Technology Forum (ESTF) - 2018


Assembled V4 Waveguide Circulators Environmental Testing at GSFC



¹³ Earth Science Technology Forum (ESTF) - 2018



Thermal & Vacuum Testing – NASA Goddard Space Flight Center

MTMGX.com

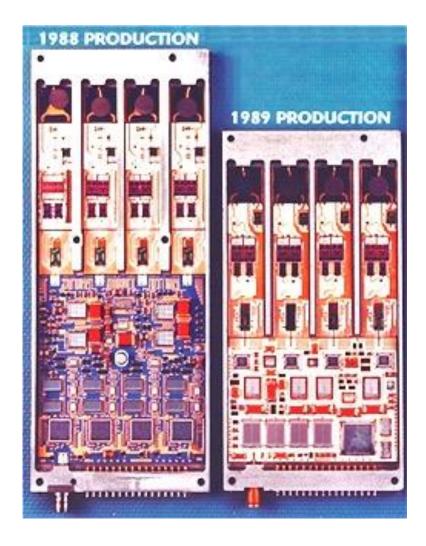
¹⁴ Earth Science Technology Forum (ESTF) - 2018

Environmental Testing of K_A-band Circulator at GSFC

Test/Conditions	Temperature, °C	Insertion Loss, dB	lsolation, dB	Comments	Image File
Test at Metamagnetics before trip to GSFC	+25	0.46	≈ 22		N/A
NASA GSFC test before temperature run	+25	≈ 0.6	≈ 23		20180418-KaCir-2-3-in-chamber-room-condition.png
In chamber, at -20 °C and < 1 Torr pressure	-20	0.95	≈ 21		20180418-KaCir-2-in-chamber-n20degree.png
After -20 °C exposure and after re- calibration	+25	0.56	23	Possible loss calibration error before re-calibration: 0.62 dB	20180418-KaCir-2-3-in-chamber-room-condition-aft-recal.png
Hot excursion	+60	1.06	18		20180418-KaCir-2-3-in-chamber-60degree.png
After +60 °C exposure	+24	0.61	22		20180418-KaCir-2-3-in-chamber-24degree-after60.png
Extreme cold excursion	-60	0.55	17		20180418-KaCir-2-3-in-chamber-n60degree.png
After -60 °C exposure and after re- calibration	+25	0.48	23	Possible loss calibration error before re-calibration: 1.01 dB	20180418-KaCir-2-roomcondition-aft-n60-aftrecal.png

Performance characteristics of Metamagnetics V4 circulator S/N 2 operating at 35.5 GHz

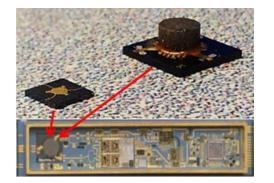
¹⁵ Earth Science Technology Forum (ESTF) - 2018

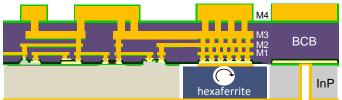

Circulator Development and Availability

Metamagnetics Circulator and Integration Activities						
Component	Frequency Range (GHz)	Development Status				
K _u -band	12 – 18	Developed				
K-band	18 – 27	Developed				
K _A -band	27 – 40	Developed, Sales exceed 4,000 units				
V-band	40 – 75	Under Development				
W-band	75 – 110	Planned Development				
MMIC integration	18 - 40	Under Development				

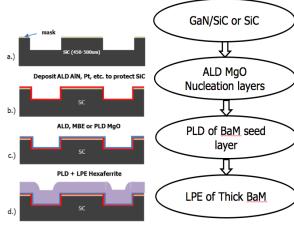
¹⁶ Earth Science Technology Forum (ESTF) - 2018

Phased Array Electronics – SoA and Potential Advancements


- Radar & Communications systems continue to push size, cost,
 bandwidth, and power efficiency limits
 - Spectrum efficiency
 - Power efficiency
 - o SWaP-C
 - Circulator/isolator is a key component that hasn't advanced in 50 years
 - $\circ~$ Designed out of systems because of size and cost
 - Performance sacrificed to replace circulator with switch (TDD) or wider bandwidth (FDD)

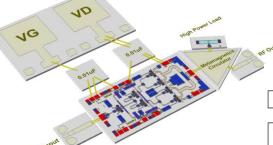


¹⁷ Earth Science Technology Forum (ESTF) - 2018

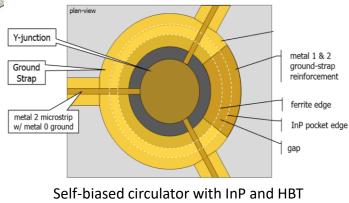


Potential Further Size and Mass Reduction through Circulator Integration with MMICs

Heterogeneous integration with III-V semiconductor fabrication process, a hexaferrite puck is embedded in an InP wafer



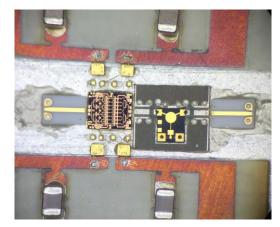
Highest level of integration involves circulator ferrite growth directly on the SiC or GaN/SiC MMIC substrate



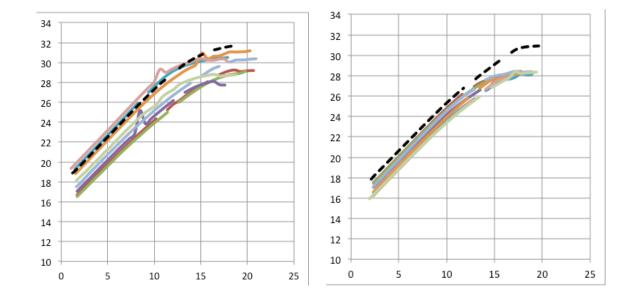
BaM and related hexaferrites can be epitaxially grown directly on a MMIC substrate

MTMGX.com

MCM integration reduces parasitics by placing miniaturized circulator in intimate proximity to MMIC on a carrier wafer or PCB.

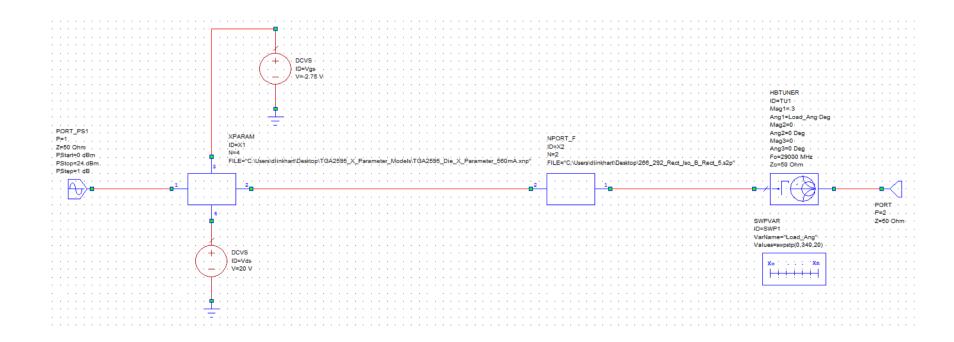


integration concept


18 Earth Science Technology Forum (ESTF) - 2018

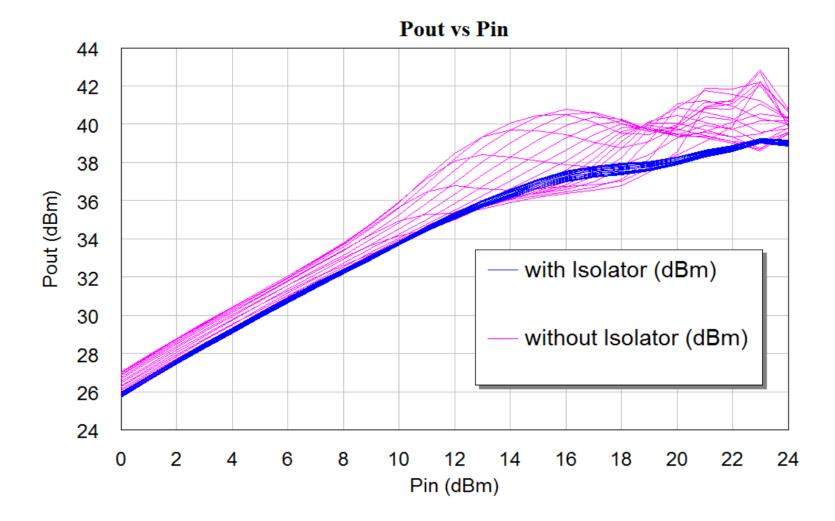
Testing Chip Level Integration of Self-Biased Circulators

Prototype integrated GaN K_A band PA and self-biased isolator

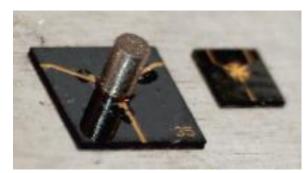


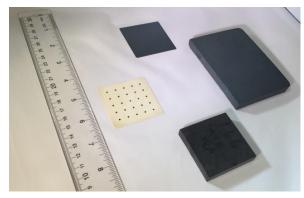
Significant reduction in load pull with self-biased isolator

- Load pull degrades output power and efficiency
- Integrated isolator improves stability of GaN PAs



Testing Chip Level Integration of Self-Biased Circulators


Testing Chip Level Integration of Self-Biased Circulators


²¹ Earth Science Technology Forum (ESTF) - 2018

Production of Self-biased Circulators at Metamagnetics

Self-biased circulators are smaller than conventional circulators in all dimensions at a given frequency

Self-biased ferrite material is produced in a high-throughput full scale manufacturing environment

070 20" 20" 20" 20" 20" 20" 20"

Batch of 39-GHz isolators in a 2 inch waffle pack Largest order to date: > 4500 units

²² Earth Science Technology Forum (ESTF) - 2018

Thank You!

²³ Earth Science Technology Forum (ESTF) - 2018

Questions?

Douglas Linkhart Principal Engineer E-mail: <u>dlinkhart@mtmgx.com</u> Phone: (781) 562-9137

Michael Hunnewell

Director of Business Development E-mail: <u>mhunnewell@mtmgx.com</u> Phone: (617) 833-2950

• Dr. Anton Geiler

President

E-mail: <u>ageiler@mtmgx.com</u> Phone: (781) 562-0756 (x 101)

²⁴ Earth Science Technology Forum (ESTF) - 2018