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Fuel moisture content (FMC) is an essential 

parameter in forecasting wildland fire spread  

 Decision support systems for wildland fire behavior are essential for effective 

and efficient wildland fire risk assessment and firefighting.

 Together with the Center of Excellence for Advanced Technology Aerial 

Firefighting in Rifle, Colorado we are developing a wildland fire prediction 

system for the State of Colorado.

 The wildland fire prediction system is based on the National Center of 

Atmospheric Research’s Coupled Atmosphere Wildland Fire Environment 

(CAWFE) model, and the Weather Research and Forecasting – Fire (WRF-

Fire) model. 

 The project supports Applied Science Program goals to deliver near-term 

uses of Earth observations by building capabilities for applying Earth science 

data to improving disaster response and ecosystem management related to 

wildfire prediction and thus deliver societal benefits.
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The goals of the project are:

• Develop, implement, and demonstrate dynamic, real-time FMC database in 

WRF-Fire coupled atmosphere wildland fire prediction model (a component of 

CO-FPS).

• Achieve more accurate accounting for live and dead FMC that will result in 

more realistic, dynamic representation of fuel heterogeneity and in improved 

accuracy of wildland fire spread prediction. 

• Assess the effectiveness of the coupled atmosphere wildland fire spread 

prediction model accounting for the FMC using observations of wildland fires 

over Colorado.

Objective is to develop a real time gridded 

fuel moisture content data set over CONUS
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Dimensionless rate of spread as a function of FMC
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 Scott and Burgan’s “Dynamic” Fuel Model (2005) eliminates the 

assumption that the fuel is uniformly dry. 

 Instead “live herbaceous load is transferred to dead as a function of 

the live herbaceous moisture content.” 

 The use of a curing coefficient allows more realistic modeling of fire 

behaviors in live fuels. 

Scott and Burgan’s Fuel Model
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Colorado Fire Predictions System (CO-FPS)

Colorado Fire Prediction System (CO-FPS) can be accessed through Colorado Wildfire 
Information Management System (CO-WIMS)
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Visualisation by Domingo Muñoz-Esparza

WRF-Fire Simulation of Last Chance Fire 

Colorado 2012
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Last Chance, Colorado, fire in 2012 was 

successfully simulated using  WRF-Fire

Muñoz-Esparza, Kosović, Jimenez, and Coen, JAMES 2018
https://doi.org/10.1002/2017MS001108

https://doi.org/10.1002/2017MS001108


9

MODIS Terra and Aqua satellite instruments: vegetation 

indices and measured reflectances from the remote 

sensing 

Remote Automatic Weather Station (RAWS) and WFAS: 

surface observations

Fuel Type from Landfire

National Fuel Moisture Database 

NWP: WRF-Hydro or HRRR

We have collected historical (2016-2017) data and 

we are collecting real time data

We have processed surface and satellite observations and 

model output for use in machine learning
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We have processed surface and satellite observations and 

model output for use in machine learning

• The data were quality controlled, satellite data were projected onto a 

1 km CONUS grid, and all the data were converted to the netCDF

format.

• The data are in general of good quality and therefore suitable for 

effective use in machine learning algorithms.

• Using reflectances we have computed the following vegetation 

indices: GVMI, NDVI, NDWI, PMI, and VARI.

• We have selected 11 wildland fires observed during fire season 2016 

in Colorado as test cases for the new FMC data set.

• We carried out simulations of selected wildland fires using constant 

FMC, these simulations will represent a baseline for the assessment 

of the new FMC data set.
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Aqua and Terra granules are mapped onto a 

one-kilometer CONUS grid

MODIS Aqua and Terra granules are separately mapped onto a 1 km CONUS grid 

that corresponds to the refined High Resolution Rapid Refresh (HRRR) forecasting 

system grid and which will be used to estimate FMC.

Terra
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Processing of MODIS (Aqua and Terra) Granules

Aqua
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Various Relevant indices are computed using  

reflectance bands 

Vegetation indices are based upon 6 of the MODIS bands
Band 1 (620-670 nm), 2 (841-876 nm), 3 (459-479nm), 4 (545-565 nm), 

5 (1230-1250 nm), and 6 (1628-1652 nm)

NDVI (Normalized Difference Vegetation Index)

NDVI = ( Band 2 – Band 1 ) / ( Band 1 + Band 2)

NDWI (Normalized Difference Water Index)

NDWI = ( Band 2 – Band 5 ) / ( Band 2 + Band 5 )

PMI (Perpendicular Moisture Index)

PMI = -0.73 (Band 5 – (0.94 Band 2) – 0.028)

VARI (Visible Atmospherically Resistant Index)

VARI = (Band 4 – Band 1) / (Band 4 + Band 1 – Band 3)

GVMI (Global Vegetation Moisture Index)

GVMI = (0.1 + Band 2) –(0.02 + Band 6) / (0.1  +Band 2) +(0.02 +Band 6)  

Vegetation Indices
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Vegetation indices are computed directly from Aqua and Terra reflectance granules.

AquaTerra

Computing Vegetation Indices Using MODIS Reflectances
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Vegetation indices are computed using reflectances and 

mapped onto a one-kilometer CONUS grid
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Linear fits of NFMD live FMC data to the MODIS 

bands 1 – 6 data are not significant to 2. 

Band1 

No

Band3

No

Band5

No

Band2

No

Band4

No

Band6

No

Band data is Not Significant

To 2

Data is for Colorado in 2016.
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Linear fits of live FMC data to the MODIS derived NDVI, 

GVMI, and VARI spectral indices are significant to 2

NDVI

Yes, 2

GVMI

Yes, 2

VARI

Yes, 2

Significant

to 2

NDWI

no

PMI

no

Surface

Temp

no

Not Significant

to 2

Data is for Colorado in 2016.
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Diurnal Variability of the Dead FMC

At some locations at different times of a year the dead FMC may exhibit significant 

diurnal variability. In general higher dead FMC is observed during nighttime.  

Metcalf Gap, CA, 15 August Lost Peak, CO, 15 August

Adel, GA, 24 May Lost Peak, CO, 24 May

In some cases there is significant diurnal dependence 

of dead FMC – likely related to precipitation
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Some live fuels show significant 

annual/seasonal variability of their FMC

FMC for Certain Fuels Exhibits Significant Seasonal Dependence

Analysis of live Colorado FMC from NFMD shows that some fuels exhibit significant annual 

variability, while others do not. This means that Julian day will be a predictor for some fuels 

(e.g., brush) and not for other fuels (e.g. Juniper).
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Selected Colorado Wildfires Observed During 2016

Selected NFMD Sites

We have baseline simulations of 11 wildfires that were observed in Colorado 

during fire season 2016. These fires will be used to assess the performance of 

the newly developed fuel moisture content dataset (product).
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Simulation of Cold Springs Fire Near Nederland, Colorado, in 2016 
Simulations with different prescribed dead FMC result in significant differences 

in burn area.

Wildland fire rate of spread model (Rothermel, 1972) 

displays significant sensitivity to dead FMC
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FMC data processing system design 

FMC Analysis System

Satellite Data:

Modis Terra

Modis Aqua

Surface 

Observations:

RAWS, METAR

Episodic Surface 

Observations:

WFAS

Model Output:

Fuel Type, NWP, 

WRF-Hydro

+ Compare to 
persistence

Evaluate 

Results 

on Test 

Dataset

Configure and Train 

Random Forests

Model to Predict Live 

and Dead FMC

Configure and Train 

Gradient Boosted 

Regression Model to 

Predict Live and 

Dead FMC

Configure and Train 

Neural Network

Model to Predict Live 

and Dead FMC

Static Data:

Fuel Type Map, 

Terrain

Merge to 
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common 

grid and 

time
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Machine learning algorithms will be independently 

trained and implemented for live and for dead FMC
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Ongoing work

Step 1: Subset data for Colorado

 MODIS, RAWS, WFAS

Step 2: Interpolate Live and Dead FMC to grid

 Most recent RAWS and WFAS observations prior to MODIS obs

 For RAWS, will start with 10:00AM observations for 10:30AM Modis file, but 

may need to use 9AM observations depending on processing time

 Include previous observation of FMC as baseline persistence forecast

 Include elevation, latitude/longitude as predictors

 Create separate datasets for Live and Dead FMC since Live is 24-hr and Dead 

is 1-hr
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Future steps

Step 3: Make initial FMC predictions using Machine Learning, 

Random Forests, Gradient Boosted Regression, and Neural 

Netowr algorithms 

 Begin feature selection for surface weather observations

 Determine if additional derived variables could be used based 

on importance of feature selection (i.e. 168-hr accumulated 

precipitation, max or min temps, etc.)

Step 4: Evaluate WRF-Hydro, HRRR model output, or METAR data 

as predictors
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Future steps

Step 3: Make initial FMC predictions using Machine Learning, 

Random Forests, Gradient Boosted Regression, and Neural 

Netowr algorithms 

 Begin feature selection for surface weather observations

 Determine if additional derived variables could be used based 

on importance of feature selection (i.e. 168-hr accumulated 

precipitation, max or min temps, etc.)

Step 4: Evaluate WRF-Hydro, HRRR model output, or METAR data 

as predictors

Step 5: Train selected machine learning algorithm

Step 6: Implement real time system for FMC data

Step 7: Evaluate real time FMC data set in comparison to baseline 

wildland fire simulations
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Questions?

Branko Kosović

branko@ucar.edu
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Machine Learning Overview

• Machine learning: mathematical models 

that discover patterns in large datasets and 

use those patterns to make predictions

• Decision trees: machine learning model 

that identifies similar hierarchical sub-

regions and applies a separate prediction 

to each region

• Random forests: ensembles of decision 

trees with resampled training data for each 

tree and random selection of features for 

tree growing

• Gradient boosting: additive ensemble of 

decision trees that minimizes errors from 

cumulative prediction of previous trees

• General experience: 

• Random forests produce accurate, 

robust predictions and are easy to 

train. 

• Gradient boosting predictions are 

sometimes more accurate but require 

more tuning to get the best results.

Example of a decision tree (McGovern et al. 2017).

Comparison of machine learning models for gridded solar 

energy forecasting (Gagne et al. 2017).  
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Data Integration

MODIS
• Optimal combination of indices vs 

measured reflectances

RAWS
• Predictor selection of surface weather 

observations

• Additional derived predictors?

WFAS
• Predictor selection of 

additional surface 
observations

Fuel 
Type

• Determine value of fuel type or 
derivation of histogram as predictor

NWP
• WRF-Hydro or HRRR

• Predictor selection of relevant 
model output

METAR

• Predictor selection of 
METAR surface obs

• Comparison to RAWS 
predictor value

Predictor Selection
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Live and Dead Fuel Moisture Content

Live Fuel Moisture Content
 Source: WFAS

 Temporal Resolution: Daily

 Data Format: netCDF format

 Period of Record: 2016

 Number of Obs Sites: 638

Predictand Metadata

Dead Fuel Moisture Content
 Source: RAWS

 Temporal Resolution: Hourly

 Data Format: netCDF format

 Period of Record: 5/9/2016 1900 

to 12/19/2016 1300

 Number of Obs Sites: 1229



29

MODIS

MODIS Terra / Aqua
 Source: MODIS

 Temporal Resolution: Daily

 Data Format: netCDF

 Period of Record: 2016 May-October

 Spatial Resolution:1-km (0.015 degrees lat/lon)

 Misc Tech Notes:

• zy2016d205.dump has file contents on /d1/NASA-

FMC/modis2016

• MODIS mod09( 1km surface reflectance), mod35 

(cloudmask) and mod11 (surface temperature) 

data. If the cloudmask says that the pixel is cloudy 

(or if there is sunglint, night data, water, ..) then 

the pixel is not used

Data Analysis

NDVI

NDWI

GVMI

PMI

VARI

Dry Index

Surface Temperature

Ratio

Band 1

Band 2

Band 3

Band 4

Band 5

Band 6

Band 7

Available Predictors
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Surface Observations

Available Predictors

Day of Year

Elevation

"FracYear"

"VegStr"

"SiteFuel"

Dewpoint Temperature

Elevation

Fuel Temperature

Precipitation Accumulation (1-min)

Precipitation Accumulation (10-min)

Precipitation Accumulation (3-hr)

Precipitation Accumulation (6-hr)

Precipitation Accumulation (12-hr)

Precipitation Accumulation (Time??)

Precipitation Intensity

Precipitation Rate

Precipitation Type

Present Weather

Relative Humidity

Sea Level Pressure

Wind Speed (10-m)

Sky Cover Base Layer

Sky Cover Cloud Fraction

Snowfall Accumulation Rate

Soil Moisture Tension

Soil Moisture Percent

Soil Temperature

Solar Radiation

Surface (Station) Air Pressure

Temperature

Visibility

Wind Direction (10-m)

Wind Direction at Gust

Wind Direction at Gust (10-m)

Wind Gust

Wind Gust (10-m)

RAWS

WFAS
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Numerical Weather and Hydrological Prediction

WRF-Hydro and HRRR

WRF-Hydro
 Source: NWM/NCAR

 Temporal Resolution: hourly

 Data Format: netCFD

 Period of Record: 2016, 2017, and 

ongoing

 Spatial Resolution: 1km

 Variables: soil moisture, soil 

saturation, evapotranspiration

HRRR
 Source: NCEP/NCAR

 Temporal Resolution: hourly

 Data Format: netCFD

 Period of Record: 2016, 2017, and 

ongoing

 Spatial Resolution: 3km

 Variables: surface temperature, 

relative humidity, wind speed
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Technical Development Overview

Rate of Spread Model

Empirical functions of terrain slope, Φs [dimensionless], and wind speed, 

Φw [dimensionless] are determined by varying wind speed and slope in a 

small flame experiments in a chamber.

The base rate of spread of the leading edge of the flaming front, R0 [m s-1], 

is a function of fuel properties in zero wind conditions on flat ground. 

Semiempirical Rothermel (1972) rate of spread model is defined as

 ξ is the propagating flux ratio [dimensionless];

 ρb is the oven dry bulk density [kg m-3], the mass of fuel per cubic 

meter of fuel bed; 

 ε is the effective heating number [dimensionless]; 
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Technical Development Overview

 Qig is the heat of preignition [J kg-1], the amount of heat required to 

heat 1 kg of fuel to combustion temperature defined as 

 IR is the reaction intensity [W m-2], the rate of heat release per unit area 

per unit time in the fire 

Here, ηM and ηS are moisture and mineral content damping 

coefficients, respectively. Moisture damping coefficient is defined as

Where rM is defined as a ratio of FMC and moisture of extinction, Mx
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Released Sensible Heat Is A Function of FMC

The sensible heat flux  Hs [Wm-2] released by the ground fire is calculated as

The term B is related to the more commonly measured fuel moisture 

content, FMC, the mass of water per unit mass of dry fuel, by:

where Δm [kg m-2] is the change in fuel load in the current time step, 

Δt [s], and hc [J kg-1] is the heat of combustion for dry cellulose fuels 

(17.4 MJ kg-1). 



35

 Combustion releases water absorbed by the fuel from its environment 

(FMC), which varies with ambient conditions for dead fuels and with 

the plant health and drought stress in live fuels. 

 Combustion also releases water bound in cellulose, which is assumed 

to make up 56% of the biomass. 

 The latent heat flux liberated by combustion is calculated based on 

the mass consumed in the current time step, the FMC for either dead 

or living fuel, and the water content of cellulosic fuels.

 The latent heat flux LEs released by the surface fire is calculated as:

Released Latent Heat Is A Function of FMC
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Vegetation indices are computed using reflectances

already mapped onto a one-kilometer CONUS grid

One possibility is to first map all the reflectances and then compute vegetation indices 

on 1 km CONUS grid. Analysis shows that this introduces a small error, compared to 

direct computation of vegetation indices
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Computing Vegetation Indices Using MODIS Reflectances

ndvi (unitless)
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Aqua Terra
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Simulation of Freeman Fire in Colorado in 2016 

Simulations with different prescribed dead FMC result in significant differences 

in burn area.

The fire perimeter reached the domain boundary 

before the simulation with FMC = 2 % ended.

Wildland fire rate of spread model (Rothermel, 1972) 

displays significant sensitivity to dead FMC
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Analysis of availability and quality of RAWS data 

shows that there are sufficient data available  

Percent Missing Number of Stations Percent of Total Stations

>80% 8 0.5%

>50% 11 0.7%

>25% 27 1.7%

>5% 66 4.1%

Analysis of RAWS Data

Majority of the RAWS are missing less than 5% of data.

Total Number of Stations 

by Percentage of Missing Data

Median Outage Length per Station 

2 or more consecutive missing values


