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Objectives

• AIST-16-0030 project Simulation-Based Uncertainty
Quantification for Atmospheric Remote Sensing Retrievals

• Project will “develop statistical methods and analysis software to
facilitate uncertainty quantification (UQ) for Level-2 atmospheric
remote sensing data products produced by operational retrieval
algorithms.”

• Apply technology to understand sources of uncertainty in
Atmospheric Infrared Sounder (AIRS) Level-2 retrieval
algorithm

• Use technology to characterize the feasibility of drought
detection with AIRS on regional scales, and other
applications that use AIRS data

• AIST program identifies this capability could support an
atmospheric science analytic center.
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Data Uncertainty

• Data uncertainty represents lack of knowledge about a
geophysical quantity of interest (QOI) after observing relevant
data.

• The true value of the QOI, X, is generally unknown, so
plausible/likely values must be characterized.

• Probability offers a coherent framework for representing the
distribution of the QOI, or the plausible error X̂− X, given an
estimate X̂ based on observed data.

• Earth science data records are relying on increasingly complex
methods for constructing estimates X̂.

• Remote sensing retrievals using satellite radiances and
radiative transfer models

• Data assimilation using Earth system models and multiple
data sources
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VVUQ

• National Research Council report (NRC, 2012) places
uncertainty quantification (UQ) for complex physical systems in a
probabilistic framework.

• UQ methodology seeks to identify the impact of sources, or
contributors, to the distribution of the error for a QOI.

• A probabilistic framework benefits from representing the system
as a data-generating process, with the QOI as an outcome.

• Monitoring the process includes describing the prediction error
under a particular set of conditions, such as a particular version
of a retrieval algorithm.

• Improving the process can result from improved understanding
of error sources.

• UQ has a role in both monitoring and improvement.
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Observing System
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• Remote sensing observing system is a complex data-generating
process with several key components.

• True top-of-atmosphere radiance is a function of
atmospheric state.

• Instrument observes noisy radiance.
• Retrieval algorithm produces estimate of state.
• Science data system scales processing.

• Objective is inference on the state given the observed radiances,
an inverse problem.
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Observing System

• General retrieval objective: infer unknown surface and/or
atmosphere states from remote sensing observations.

• Typically heterogeneous collection of unknowns, such as surface
and atmosphere characteristics.

• Simulation of the data-generating process provides UQ insights.

• Ideally UQ includes characterizing the joint distribution of [X, X̂].
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OSUE
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Retrieval algorithm teams provide simulation experiment datasets.

Proposed software is 
implemented offline to 
analyze experiments.

• Observing system uncertainty experiment
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Figures of Merit
• Retrieval properties can be summarized with figures of merit

(FOM) based on Monte Carlo experiment.

• FOM is a quantitative summary of the joint distribution [X,Y, X̂].
Examples:

• Item-by-item average error, or bias
• Item-by-item error standard deviation
• Covariance matrix of retrieval errors

• Additional multivariate FOMs have been proposed for retrieval
simulation experiments. (Hobbs et al., 2017; Cressie and
Burden, 2015)

• Normalized bias and error correlation for heterogeneous
state vectors

• Diagnosis of retrieval-based uncertainty estimates

• Project includes development of conditional FOMs based on
[X|Y]
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QOI
• Framework has flexibility for different retrievals R.

• Often interest in a functional QOI g(X) and retrieval g(X̂).
• Orbiting Carbon Observatory-2 (OCO-2) users focus on

scalar XCO2.
• Some AIRS applications use vapor pressure deficit (VPD)

as a primary QOI.
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Project Objectives

• Python module for analysis of OSUEs
• Generic classes for figures of merit (FOM) that apply to

various retrievals
• Retrieval-specific classes: OCO-2, AIRS

• Implement OSUE for AIRS operational retrieval
• Experiments for a variety of conditions, termed geophysical

templates
• Identify implications for AIRS data in applications
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Module
UQ Experiment Python Classes

UQExpt

Attributes
• Source File
• State Variable
• Observed (radiance) Variable
• Retrieved State Variable    

Methods
• Define QOI
• Standardized Error bias, 

variance, QQ plot
• Multivariate Error inverse 

CV, standard deviation, 
correlation matrix   

OCO-2 AIRS
Methods

• XCO2 QOI
• Error Analysis 

Metrics
    

Attributes
• Pressure Wt Fn
• OE uncert variable
• Quality variables

Methods
• Sfc T,q QOI
• Derived QOI: VPD

    

Attributes
• Quality variables
• Radiance variables

Other 
Missions
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OCO-2 Multivariate
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• Normalized bias, or Icv , summarizes bias relative to error
variability for heterogenous state vector components.

• Retrieval error correlation matrix depicts magnitude of
association among retrieval errors for state vector components.
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Templates

• AIRS data have
demonstrated utility,
through derived
quantities, to detect
drought onset (Behrangi
et al., 2016)

• Uncertainty in retrieved
temperature, humidity
propagate to derived
drought indices

• Template based on 2012
Midwest US drought

• Ensemble of true states
assembled from MERRA2 http://droughtmonitor.unl.edu
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AIRS OSUE Workflow

Step I 
Subset MERRA2 data

(3-hourly & 
instantaneous)

1. 3-D variables
• Air temperature
• Specific humidity
• Geopotential 

height
• Cloud fraction
2. 2-D variables
• Surface 

temperature
• Surface pressure
3. Constants
• Surface altitude
• Land fraction

Step II 
Prepare input files 

to run SARTA

1. Subset along 
AIRS tracks
• Day (21 UTC) 
• Night (09 UTC)

2. Vertical 
interpolation
• Air temperature
• Water vapor 

molecular density

Step III 
Run SARTA

1. Pick the closest 
AIRS granule to 
the MERRA grid
• Copy viewing 

geometries 
(landfrac, solar 
zenith angle, etc.) 
from AIRS L1B into 
SARTA rtp file

• Assume that within 
a 3x3 L1B grid, the 
only variable that 
varies is cloud 
fraction.

Step IV 
Add radiance 

measurement errors

1. Errors are 
assumed to be 
zero mean and 
independent 
across channels

2. Standard deviation 
are given by the 
AIRS radiance 
errors.

Step IV 
Run AIRS retrieval

1. Copy the SARTA 
radiance back 
onto the AIRS L1B 
file

2. Retrievals are 
done using the 
standard AIRS 
algorithm.

3. Cloud clearing is 
included as part of the 
retrieval.

• AIRS OSUE workflow
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AIRS Multivariate
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Multivariate retrieval error distribution for a single AIRS experiment

• Error correlation matrix demonstrates vertical dependence for
both variables, plus cross-dependence
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Discussion

• Upcoming activities

• Experimental design for AIRS simulations with clouds
• Identify and process additional geophysical templates
• Potential incorporation to Level 3 products
• Python module examples and documentation

• Interaction with AIRS project and science teams

• Synergy with other activities: validation, data fusion
• Long term: potential contribution to uncertainty information

in products

• Offline analysis with OSUEs executed by other project teams

• Assessment of algorithm design as part of ReFRACtor (PI
James McDuffie, JPL)
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Questions?
Jonathan.M.Hobbs@jpl.nasa.gov

c© 2018 California Institute of Technology.
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