



### The CubeSat Radiometer RFI Technology Validation (CubeRRT) Mission: Instrument Pre-Launch Testing and Project Status

C. Ball, J. T. Johnson, C.-C. Chen, A. O'Brien, G. E. Smith, C. McKelvey, M. Andrews, J. L. Garry *The Ohio State University* 

S. Misra, R. Bendig, C. Felten, S. Brown, R. Jarnot NASA JPL

> J. Kocz California Institute of Technology

K. Horgan, M. Fritts, J. Lucey, C. Duran-Aviles, M. Solly, J. Piepmeier NASA GSFC

> D. Laczkowski, M. Pallas, E. Krauss Blue Canyon Technologies

> > ESTF 2018

Silver Spring, MD



**THE OHIO STATE UNIVERSITY** 





- CubeRRT overview and objectives
- Satellite bus and instrument overview
  - RF antennas
  - Radiometer front-end
  - Radiometer digital back-end
- Integration and test activities
- Launch
- Operations and data processing
- Conclusions and next steps







- CubeRRT: CubeSat Radiometer Radio Frequency Interference (RFI) Technology Validation mission
  - Funded by NASA's In-space Validation of Earth Science Technologies (InVEST) program
- 6U CubeSat to demonstrate spaceborne RFI detection and mitigation technology
  - Address data processing needs of future satellite-based microwave radiometer systems
- Spacecraft delivered to Nanoracks for launch preparation
- Launched on May 21, 2018 (OA-9 / ELaNa 23 ISS resupply)
- Deployment from ISS: late July, early August











- Microwave radiometers observe the naturally generated microwave thermal emission from Earth for use in a variety of science applications
  - Man-made transmissions cause radio-frequency interference (RFI)
- Radiometers attempt to avoid RFI by operating in frequency bands where transmission is prohibited, but this is not always possible or effective



GMI Image at 18.7 GHz with RFI 'hot spots'

Spectrum Allocation and Usage



• RFI problem is even more challenging for future radiometer systems

|                                     | SMAP                        | Future                                          |
|-------------------------------------|-----------------------------|-------------------------------------------------|
| Number of bands                     | 1                           | 6 or more                                       |
| Bandwidth                           | 20 MHz                      | 100's of MHz in each channel                    |
| RFI Processing on ground?           | Yes (small downlink volume) | Not possible (downlink volume too large)        |
| RFI Processing on-board spacecraft? | No; not necessary           | Yes; only way to address RFI for future systems |







- Technology validation mission
  - Designed for 1 year of operation
- Mature RFI mitigation technology from TRL 5 to TRL 7
- Demonstrate digital processor to detect and filter RFI
  - Mitigate pulsed and continuous sinusoidal RFI
  - Downlink raw and RFI-mitigated data
  - Compare reported RFI flags with reconstruction on ground
- Meet baseline mission requirement
  - Provide radiometry data from at least 100 hours of spaceborne operation
  - 10 hours in each of 10 pre-defined frequency bands

|--|

| 6800  | 23800 |
|-------|-------|
| 10400 | 31400 |
| 18700 | 34000 |
| 19400 | 36500 |
| 22200 | 37500 |

| Mission Properties                         |                                                                                                                                                                                                                     |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Frequency                                  | 6 to 40 GHz Tunable, 1 GHz instantaneous                                                                                                                                                                            |  |  |  |
| Polarization                               | Circular polarization                                                                                                                                                                                               |  |  |  |
| Observation<br>angle/Orbit<br>(ISS launch) | 0° Earth Incidence Angle<br>400 km altitude, 51.6° orbit inclination                                                                                                                                                |  |  |  |
| Spatial Resolution                         | 80 km (40 GHz) to 240 km (6 GHz)                                                                                                                                                                                    |  |  |  |
| Integration time                           | 100 msec                                                                                                                                                                                                            |  |  |  |
| Ant Gain/<br>Beamwidth                     | 12dBi/30° (6 GHz), 21 dBi/10° (40 GHz)                                                                                                                                                                              |  |  |  |
| Interference<br>Mitigation                 | On-board Nyquist sampling of 1 GHz spectrum;<br>On-board real-time Kurtosis and Cross-Frequency<br>Detection<br>Downlink of frequency resolved power and kurtosis in<br>128 channels to verify on-board performance |  |  |  |
| Calibration                                | Internal: Reference load and Noise diode sources<br>External: Cold sky and Ocean measurements                                                                                                                       |  |  |  |
| Noise equiv dT                             | 0.8 K in 100 msec<br>(each of 128 channels in 1 GHz)                                                                                                                                                                |  |  |  |
| Average Payload<br>Data Rate               | 9.375 kpbs (including 25% duty cycle)<br>~102 MB per day,~ 37 GB over 1 year mission life                                                                                                                           |  |  |  |
| Downlink                                   | 135 MB per daily ground contactDownlink[6 minute contact with 3 Mbps UHF cadet Radic<br>32% margin over payload data                                                                                                |  |  |  |





- Blue Canyon Technologies delivered 6U spacecraft bus
- BCT's XB1 unit provides flight computer, attitude control, navigation information, and communications
- Bus provides isolated power to payload radiometer to prevent ground loops
- Two contacts per weekday planned using WFF ground station
  - Primary: UHF Cadet radio
  - Backup: Globalstar satellite network







- Antennas and solar panels deploy from stowed position post-deployment
- Operates in a nadir viewing configuration
- Designed for yaw steering, which maximizes solar panel view of sun while taking radiometry measurements













- Developed by NASA Goddard Space Flight Center
- Major subsystems
  - Microwave Assembly (MWA)
  - Local Oscillator and IF Circuit Assembly (LO-IF)







- Developed by NASA JPL
- ADC samples RFE's IF output at 2 GSPS
- RFI detection and mitigation performed using a combination of firmware (Zynq FPGA fabric) and software (Zynq embedded ARM processor)
  - Provides options in trading off power consumption versus flexibility and processor speed
- Multiple algorithms offer better performance for differing RFI types

| Cross Frequency (128ch/100ms) | CW, narrowband signals    |
|-------------------------------|---------------------------|
| Kurtosis (128ch/100ms)        | Pulsed-type/low-level RFI |

- Cross-frequency "flattens" data on board to improve sensitivity
  - Uses antenna/reference data to remove majority of passband shape prior to detection
  - Also includes additional on board frequency dependent table to "flatten" even further





## **Payload Integration**









- Flight model testing for the integrated CubeRRT payload occurred in October 2017 at GSFC
- Testing highlights include:
  - End-to-end radiometry measurements through integrated payload
  - Passband flattening implementation and optimization
  - Successful RFI detection and mitigation using injected and radiated signals
  - Thermal cycle testing









- Tested the ability to detect injected RFI
- Radiometer was tuned to a fixed frequency, with RFI injected and stepped across passband
- RFI was correctly flagged for the antenna measurements





# **RFI Detection Performance Tests**



- Example injecting sinusoidal RFI at differing frequencies into 9.9-10.9 GHz measurements
- RFI source power kept constant, but contribution modulated by passband shape of radiometer
- CubeRRT reports 128 point spectra versus time, but also removes corrupted RFI and reports mitigated and unmitigated total power
- Injected RFI contribution in this example varies from ~ 2K to ~ 10K depending on location in passband
- CubeRRT mitigates RFI down to ~ 2 NEDT level
  - Plot to right is averaged over multiple measurements to make RFI contributions clearer





![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_2.jpeg)

- Radiometric Sensitivity (NEDT):
  - < 1K for f< 10 GHz
  - ~ 1-3K for 10<f<35GHz
  - ~ 3-30K for f> 35 GHz
- Coarse sensitivity for f> 35 GHz will allow only large RFI sources O(~20-100K) to be observed
- Real-time RFI detection and removal can still be shown

![](_page_14_Figure_9.jpeg)

![](_page_15_Picture_0.jpeg)

## **Payload-Spacecraft Integration**

![](_page_15_Picture_2.jpeg)

 RFE/RDB delivered to Blue Canyon Technologies and integrated into spacecraft November 2017

![](_page_15_Picture_4.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_2.jpeg)

- Testing Jan-Feb 2018 included:
  Self correctibility
  - Self-compatibility
  - Environmental
    - Random vibration
    - Thermal vacuum
  - Day-in-the-Life

![](_page_16_Picture_9.jpeg)

![](_page_16_Picture_10.jpeg)

![](_page_16_Picture_11.jpeg)

![](_page_17_Picture_0.jpeg)

## **Payload-Spacecraft Integration**

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)

![](_page_17_Picture_5.jpeg)

![](_page_17_Picture_6.jpeg)

![](_page_18_Picture_0.jpeg)

## OA-9 Launch (May 21, 2018 4:44am)

![](_page_18_Picture_2.jpeg)

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_2.jpeg)

- Manage battery depth-of-discharge
  - Up to 33% duty cycle (~30 minutes out of a ~90 minute orbit)
- Power-on payload during passes over likely RFI locations
  - On-board timed command table
  - Highest incidence of RFI over land
- Plan weekly schedule of payload on/off times
  - Simulation tool used to predict satellite locations
  - Commands uploaded periodically to satellite
  - ICD between BCT and OSU to coordinate process
- Observe RFI ~14 seconds per location
  - Antenna has large spot size (~80 km at 40 GHz, ~240 km at 6 GHz)
- On-orbit commanding allows precise control of frequency list and calibration (load and noise diode) switching

![](_page_19_Picture_15.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_2.jpeg)

 1 year of operation operating 30 min/orbit and frequency switching every 10s results in:

![](_page_20_Figure_4.jpeg)

 Baseline mission objectives (10 hours of operation in all 10 frequency bands) achieved within first 14 days

Average RFI efficiency of 98% 65% of total observation time over land Over 99% of land observed at each frequency

![](_page_20_Figure_7.jpeg)

![](_page_21_Picture_0.jpeg)

## **Standard Operations Flow**

![](_page_21_Picture_2.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

| Level 0                                                       | 1A Processor                                                       | Level 1A                                      | 1B Processor                                                  | Level 1B                                        |
|---------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|
| Raw<br>downlinked<br>data, pushed<br>by BCT to<br>SFTP server | Extract<br>payload data<br>and desired<br>telemetry to<br>Level 1A | Relevant<br>CubeRRT<br>data in HDF5<br>format | Calibrate<br>brightness,<br>geolocate<br>data, analyze<br>RFI | Final data<br>product<br>located at<br>SFTP/web |

![](_page_22_Picture_5.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_2.jpeg)

- Frequency(ies)
- Unmitigated brightness temperature(s)
- Mitigated brightness temperature(s)
- Latitude
- Longitude
- Pixel Size
- Time
- RFI Flags

![](_page_23_Picture_11.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_2.jpeg)

- CubeRRT will validate RFI detection and mitigation technologies for future Earth observing microwave radiometers operating 6-40 GHz
- Deployment from ISS into orbit expected late-July / early-August
- Commissioning phase (few weeks)
- Operations phase (up to 1 year)
- Level 1B data will be publicly available through OSU

![](_page_24_Picture_8.jpeg)

![](_page_25_Picture_0.jpeg)

#### **Questions?**

![](_page_25_Picture_2.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)