Multi-Application Smallsat Tri-band Radar - MASTR

Mauricio Sanchez Barbetty1
Gregory Sadowy1
Simone Tanelli1
Dalia MacWatters1
Kyle Stewart1

David Miller2
Chris Hermanson2
Ken Vanhille2
PJ Novak2
Benjamin Cannon2
Deepa Rajamani2
Jim Looney2
Tonda MacLeod2

1 Jet Propulsion Laboratory, California Institute of Technology.
2 Nuvotronics Inc.
Why MASTR?

Clouds and Precipitation

- Addressed separately by active instruments so far (i.e., TRMM, GPM & RainCube at Ku and Ka band, vs CloudSat and EarthCARE at W-band).
- Three-frequency single aperture radar enables holistic view of the cloud-precipitation process
- Technology maturity over the last decade enables scanning at W-band as well as tri-band integration

Altimetry and Scatterometry

- Once an RF front end for a Ku/Ka-/W- real aperture scanning radar is available, making it suitable for other applications is possible.
 - For altimetry it is "only" a matter of opening up the bandwidth;
 - For scatterometry more significant changes are necessary, but still possible (i.e., changing viewing geometry and tightening calibration requirements)

MASTR is tri-band (Ku-, Ka-, W-band) scalable phased array radar. Designed to work as a Cloud and Precipitation Radar, an Altimeter, or a Scatterometer (in a Spinning platform). A modular, scalable architecture enables technology maturation via an airborne demonstration AirMASTR. A compact profile allows multiple implementations depending of mission requirements, power, and budget available (ranging from SmallSats to large platforms).
The 5 missions with Spaceborne C&P Radars

TRMM/PR – NICT/JAXA
Ku, Scanning, Tropical Rain

GPM/DPR – NICT/JAXA
Ku/Ka, Scanning, Precipitation

EarthCARE/CPR
NICT/JAXA
W, Doppler, Clouds

1997-2015

2006-Today

2014-Today

Some concepts under development or proposed by the international community

PHDsat (2002)
Ka/Ku, Scanning Doppler

SnowSat / PPM
W/Ka, Doppler

StormSat on ISS (2016)
Ka, DPCA Doppler
Wide Swath winds
W Conical Scanning

ACERAD
ReflectArray ACE radar

ED DS 2007:
ACE Mission Concept Radar
Ka/W, Doppler, Scanning (Ka)

ED DS 2017:
Radar Constellation
Core S/C: Ku/Ka/W, all Doppler, all Scanning

IIP 2016:
MASTR
Ku/Ka/W, Scanning, SmallSat

Next up: Launch NET Mar 2018

RainCube
JPL/NASA InVEST Tech Demo
Ka, Precipitation, 6U CubeSat

ES DS 2017:
Radar Constellation
Core S/C: Ku/Ka/W, Trains: RainCube

NIS (2004)
W/Ka, Scanning, Doppler, GEO

VIPR
183 GHz line
Water Vapor in Cloud
Recent GPM/ACE joint Experiments

The ACE Science Working Group and GPM ground validation program have successfully completed two joint projects where multi frequency cloud-precipitation radar data were acquired:

- **IPHEX/RADEX'14**, N. Carolina, May/Jun 2014

W. Petersen, M. Schwaller, J. Mace, R. Marchand, A. Barros, R. Houze, L. McMurdie and many others.

- GPM exploits the multi frequency radar data to better constrain the validation of GPM retrievals.
- ACE seeks to demonstrate and refine the definition of the radar for the ACE mission.

The radar measurements acquired from both the DC-8 and the ER-2 are proxies to the ACE/CCP radar observables. Ground based radar measurements provided complementary view.

The ACE Science Working Group and GPM ground validation program have successfully completed two joint projects where multi frequency cloud-precipitation radar data were acquired:

APR-3 on DC-8 (ESTO/AITT Program) is the first 3-frequency (Ku, Ka, W), scanning, Doppler, airborne radar.

CRS and HIWRAP in nadir pointing configuration on ER-2.

Note the independent signatures in the two differential channels: differential scattering and attenuation reduce the ambiguity in retrievals.
AirMASTR Instrument overview

- Airborne demonstration of MASTR using fewer tiles. TX power per element and tile design are essentially the same as MASTR.
- AirMASTR will be capable of Ku/Ka/W-band cross-track scanning, Doppler, and polarimetry.
- Reflector size 30cmx50cm.
- Transmit RF peak power
 - W-band: 64W
 - Ka-band: 160W
 - Ku-band: 240W
- Direct frequency conversion and baseband digital electronics based on RainCube.
- Baseband IQ
- Single stage up/down conversion, inherited from Raincube.
- Active Linear Array Feeds in close proximity at the focal plane of a parabolic reflector provide cross track scanning.
- System capable to high bandwidth (<300MHz) for Altimetry.
- Each band is independent, allowing implementations with subset of the band (e.g. Only Ku and W).
- Analog beamforming solution.
AirMASTR antenna SAT/cell topology

W-SAT (8 SAT’s, 32 cells total)

Ka-SAT (8 SAT’s, 32 cells total)

Ku-SAT (3 SAT’s, 12 cells total)
Nuvotronics’ MASTR Involvement

- Multi-band cloud and precipitation radar identified in latest decadal survey as a high-priority earth-science observation
- Nuvotronics has supported JPL over several years to develop demonstration hardware for front-end radar modules in support of possible JPL instrument architectures

- Nuvotronics’ MASTR-specific involvement includes:
 - W-band T/R modules delivered under JPL-led 3CPR IIP project (2013 IIP award) and SBIR Phase II Enhanced project
 - Ku-band T/R modules under development with current MASTR effort
 - Ka-band T/R modules under development with current MASTR effort
 - High-level, front-end integration study

SBIR DATA RIGHTS:
Contract Number: NNX15CP18C.
Nuvotronics, Inc. Overview

- Focused on delivering microwave and mm-wave products for government applications
 - Shipping products to government and commercial customers
 - Fabrication process also capable of microfluidic devices, thermal management and mechanical devices
- Privately-held small business
- Design, Fabrication / Manufacturing and Test capabilities
- R&D, including SBIR work remains a portion of our business
- AS9100 Certified
The PolyStrata® Fabrication Process

- Compact & precise 3D air-dielectric coaxial circuits
- Wafer-level batch processing
- Low cost and optimum part to part repeatability
- Micron-scale tolerances in all three axes
- Low RF loss and high isolation from DC to > 100 GHz
Ku-band Scanning Array Tile (SAT) Front-End Module

Transmit Path
- GPPO connector
- Power Splitter
- Phase Shifter
- Driver Amp
- HPA
- GPPO connector

Receive Path (X 2 Polarizations)
- GPPO Connector
- Attenuator
- Gain Amp
- Phase Shifter
- LNA
- Limiter
- GPPO Connector

Table: Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
<th>Spec Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>13.6</td>
<td>GHz</td>
<td>typical</td>
<td></td>
</tr>
<tr>
<td>Tx elements</td>
<td>4</td>
<td></td>
<td>nominal</td>
<td></td>
</tr>
<tr>
<td>Rx elements</td>
<td>4</td>
<td></td>
<td>nominal</td>
<td></td>
</tr>
<tr>
<td>Tx power</td>
<td>+43</td>
<td>dBm</td>
<td>typical</td>
<td>Peak per element</td>
</tr>
<tr>
<td>Tx duty cycle</td>
<td>10</td>
<td>%</td>
<td>maximum</td>
<td>pulsed drain current</td>
</tr>
<tr>
<td>Tx polarization</td>
<td>1</td>
<td>horizontal</td>
<td>nominal</td>
<td></td>
</tr>
<tr>
<td>Rx polarization</td>
<td>2</td>
<td>horizontal; vertical</td>
<td>nominal</td>
<td>simultaneous operation</td>
</tr>
<tr>
<td>Rx noise figure</td>
<td>4.5</td>
<td>dB</td>
<td>maximum</td>
<td>each channel</td>
</tr>
<tr>
<td>Size</td>
<td>64 x 44 x 175</td>
<td>mm</td>
<td>maximum</td>
<td>W x H x L</td>
</tr>
</tbody>
</table>
Ka-band Scanning Array Tile (SAT) Front-End Module

Transmit Path

- **Gain Amp**
- **HPA**

Receive Path (X 2 Polarizations)

- **Attenuator**
- **LNA**
- **Limiter**

Description Table

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
<th>Spec Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>35.75</td>
<td>GHz</td>
<td>typical</td>
<td></td>
</tr>
<tr>
<td>Tx elements</td>
<td>4</td>
<td>nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx elements</td>
<td>4</td>
<td>nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx power</td>
<td>+36.7</td>
<td>dBm</td>
<td>typical</td>
<td>peak per element</td>
</tr>
<tr>
<td>Tx duty cycle</td>
<td>10</td>
<td>%</td>
<td>maximum</td>
<td>pulsed drain current</td>
</tr>
<tr>
<td>Tx polarization</td>
<td>1</td>
<td>horizontal</td>
<td>nominal</td>
<td></td>
</tr>
<tr>
<td>Rx polarization</td>
<td>2</td>
<td>horizontal; vertical</td>
<td>nominal</td>
<td>simultaneous operation</td>
</tr>
<tr>
<td>Rx noise figure</td>
<td>4</td>
<td>dB</td>
<td>maximum</td>
<td>each channel</td>
</tr>
<tr>
<td>Size</td>
<td>23.6 x 16 x 54</td>
<td>mm</td>
<td>maximum</td>
<td>W x H x L</td>
</tr>
</tbody>
</table>
Design Improvements Compared to SBIR Assemblies

• Ku Critical Design Objectives
 ◦ Manage Stack Up Tolerances
 ◦ Ease of Assembly
 ◦ Minimize Signal Interference
 ◦ Follow updated PCB design guidelines
 ◦ Optimize Noise Figure performance
 ◦ Follow methodical change control practices

• Design Modifications to Ku SAT include
 1. Design for Assembly Improvements
 2. Design for Diagnostics & Repair
 3. Noise Figure improvements

• Ka Critical Design Objectives
 ◦ Efficient & low cost wire bonding operation
 ◦ High yield for wire bonds
 ◦ Easily of Assembly
 ◦ Design for Analysis/Repair
 ◦ Minimize the cost of testing
 ◦ Avoid signal interference
 ◦ Improve Noise Figure performance
 ◦ Robust DC Connections - PS to board
 ◦ Enable electronic testing of Ka Module

• Design Modifications to KA SAT include
 1. Design for Assembly Improvements
 2. Design for Test, Diagnostics & Repair
 3. Noise Figure improvements

Initial Ku-band and Ka-band front-end modules were built on a previous SBIR contract. Lessons learned have been incorporated in these MASTR designs.
Estimated ALAF Temperature Map

- Temperature rise estimates based on thermal load estimates determined by IC efficiency, location and operation modes.
- Isothermal boundary condition in coolant tube = 293.6K
- Peak temperature rise of all metal structures is 17.5°C

<table>
<thead>
<tr>
<th>Component</th>
<th>Peak dT above Coolant (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ku SAT</td>
<td>17.5</td>
</tr>
<tr>
<td>W SAT</td>
<td>16.4</td>
</tr>
<tr>
<td>Ka SAT</td>
<td>13.7</td>
</tr>
<tr>
<td>Cold Plate</td>
<td>1.4</td>
</tr>
<tr>
<td>Waveguide Combiner</td>
<td>3.9</td>
</tr>
</tbody>
</table>
AirMASTR Development Status

• Instrument architecture completed and subsystems requirements documents generated.

• Scanning Array Tiles
 • W-band delivered.
 • Design revision completed for Ku-band and Ka-band.
 • Currently manufacturing polystrata pieces.

• Active Linear Array Feeds
 • Ku/Ka Band: Timing, control, RF Performance, Power, and Mechanical requirements all defined. Subcontract in work.
 • W-band: Under development by 3CPR-IIP, P.I. G. Sadowy

• Digital subsystem:
 • Designed under subcontract with Remote Sensing Solutions. Delivery on fall 2018.

• Frequency converters:
 • Requirements document released. Currently competing subcontract.

• I&T and Instrument accommodation
 • Working with DC8 team on requirements and resources.

• Planning first flight for November 2019.
Thank you for your attention
Questions?

Acknowledgement: This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Thanks to NASA ESTO IIP and ACT programs, NASA SBIR and JPL R&TD and CIF programs for supporting this work and work that lead to the current status of this project.

Thanks to Nuvotronics for developing the W-band, Ka-band, and Ku-band modules that have made MASTR possible, and for its developing innovative microwave and mm-wave technologies.

Thanks to Remote Sensing Solutions for the development of the digital subsystem.
BACKUP SLIDES TO FOLLOW
<table>
<thead>
<tr>
<th>Targeted Observable</th>
<th>Science/Applications Summary</th>
<th>Candidate Measurement Approach</th>
<th>Designated Explorer</th>
<th>Indirect CONTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosols</td>
<td>Aerosol properties, aerosol vertical profiles, and cloud properties to understand their effects on climate and air quality</td>
<td>Backscatter lidar and multi-channel/multi-angle/polarization imaging radiometer flown together on the same platform</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clouds, Convection, and Precipitation</td>
<td>Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes including cloud feedback</td>
<td>Radar(s), with multi-frequency passive microwave and sub-mm radiometer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mass Change</td>
<td>Large-scale Earth dynamics measured by the changing mass distribution within and between the Earth’s atmosphere, oceans, ground water, and ice sheets</td>
<td>Spacecraft ranging measurement of gravity anomaly</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Surface Biology and Geology</td>
<td>Earth surface geology and biology, ground/water temperature, snow reflectivity, active geologic processes, vegetation traits and algal biomass</td>
<td>Hyperspectral imagery in the visible and shortwave infrared, multi- or hyperspectral imagery in the thermal IR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Surface Deformation and Change</td>
<td>Earth surface dynamics from earthquakes and landslides to ice sheets and permafrost change</td>
<td>Interferometric Synthetic Aperture Radar (InSAR) with ionospheric correction</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Greenhouse Gases</td>
<td>CO₂ and methane fluxes and trends, global and regional with quantification of point sources and identification of sources and sinks</td>
<td>Multispectral short wave IR and thermal IR sounders, or lidar**</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ice Elevation</td>
<td>Global ice characterization including elevation change of land ice to assess sea level contributions and freeboard height of sea ice to assess sea ice/ocean/atmosphere interaction</td>
<td>Lidar**</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ocean Surface Winds and Currents</td>
<td>Coincident high-accuracy currents and vector winds to assess sea-air momentum exchange and to infer upwelling, upper ocean mixing, and sea-ice drift</td>
<td>Doppler scatterometer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ozone and Trace Gases</td>
<td>Vertical profiles of ozone and trace gases (including water vapor, CO, NO₂, methane, and N₂O) globally and with high spatial resolution</td>
<td>UV/Vis/IR microwave limb radair sounding and UV/Vis/IR solar/stellar occultation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Snow Depth and Snow Water Equivalent</td>
<td>Snow depth and snow water equivalent including high spatial resolution in mountain areas</td>
<td>Radar (Ka/Ku band) altimeter; or lidar**</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Terrestrial Ecosystem Structure</td>
<td>3D structure of terrestrial ecosystem including forest canopy and above ground biomass and changes in above ground carbon</td>
<td>Lidar**</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Credit: ESAS 2017

** Could potentially be addressed by a multi-function lidar designed to address two or more of the Targeted Observables.
Objective W-4a: Measure the vertical motion within deep convection to within 1 m/s and heavy precipitation rates to within 1 mm/hour to improve model representation of extreme precipitation and to determine convective transport and redistribution of mass, moisture, momentum, and chemical species.

“An example baseline radar system would include a three-frequency system centered upon scanning Ku, Ka and W-band (e.g. 13, 35 and 94 GHz) radars, with Doppler capability at all frequencies. Addressing this objective requires measurement of particle vertical velocities ideally with ~20 cm/sec accuracy or better in cloud and stratiform precipitation, and at least 50 cm/s accuracy inside deep convection. Radar reflectivity of ice particles should be measured with a sensitivity of approximately -30 dBZ in cloud and -10 dBZ in precipitation. The mean particle diameter estimated from multi-frequency reflectivity observations can be used to estimate the terminal fall speed and density and habit. Measurements should be acquired at a vertical resolution of at least 250 m to resolve the vertical structure in the storm, and a horizontal resolution of 1 km in cloud and light precipitation. A horizontal resolution of 2 km is preferred to resolve convection. All measurements are to be acquired over a swath of a few tens of km to sufficiently cover the convective-scale storm system.”

<table>
<thead>
<tr>
<th></th>
<th>Baseline Example</th>
<th>MASTR</th>
<th>Minimum Configuration @ 400 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Ku, Ka and W</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>All scanning</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>All Doppler</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>20 cm/s in stratiform</td>
<td></td>
<td>✔</td>
<td>3 m single or 1 m DPCA (@ nadir)</td>
</tr>
<tr>
<td>50 cm/s in convection</td>
<td></td>
<td>✔</td>
<td>3 m single or 1 m DPCA (@ nadir)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>-10 dBZ in precip</td>
<td>✔</td>
<td>2 m (@ nadir) or 3 m (@ swath)</td>
</tr>
<tr>
<td></td>
<td>-30 dBZ in cloud</td>
<td>✔</td>
<td>2 m (@ nadir) or 3 m (@ swath)</td>
</tr>
<tr>
<td>Vertical Resolution</td>
<td>250 m</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Horizontal Res.</td>
<td>1 km in cloud</td>
<td>✔</td>
<td>1.5 m</td>
</tr>
<tr>
<td></td>
<td>2 km in convection</td>
<td>✔</td>
<td>2 m</td>
</tr>
<tr>
<td>Swath</td>
<td>A few tens of Km</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

Credit: ESAS 2017
[...] we focused on an architecture that emphasized time-sharing and design-sharing. It was observed that measurement approaches requiring simultaneous acquisition of different sensor data for multiple applications using the same instrument quickly lead to complex designs, with correspondingly large size, weight and power (SWaP), and/or a requirement for technologies that are not yet mature. A different approach is to seek a design that does not acquire all measurements simultaneously but is capable of addressing all objectives sequentially in a time-sharing approach. Furthermore, the recent rapid evolution of SmallSats and low-cost access to space can be best exploited by architectures that utilize multiple instrument configurations each comprised of the same modular hardware. Here, a specific configuration is chosen to optimize the sensor for different objectives while using the same electronics designs, termed a design-sharing approach. MASTR adopts both time-sharing and design-sharing to provide the flexibility of tailoring the instrument design to a range of science applications while minimizing instrument electronics NRE, spacecraft and launch costs.
MASTR as “Team Player”

MASTR architecture is very well suited to leverage on POR or contributions from other agencies/nations because it is really modular and scalable.

DISCLAIMER: All of the examples below are only examples to convey the flexibility — they are not point designs or options already agreed upon by anyone, some, in fact don’t even make sense from a timeline point of view.

1. Fly in formation with GPM/DPR to complement it as “light precipitation detector”?
 1. → 1m MASTR with only Ka and W band implemented on a small sat (ESPA class)

2. Fly in formation with EarthCARE CPR to observe moderate precipitation and Doppler in Convection when in the Tropics and ice/snow extent and height/depth when in polar regions?
 1. → 2m MASTR with only Ku and W implemented on a CloudSat-class bus (i.e., BCP 2000)
 Switch between Precipitation Mode and Cryo-Altimetry Mode at seasonally prescribed latitudes.

3. Fly in the context of an Asian constellation of Ku-band Small-Sat radars (being considered by JAXA) to observe the vertical fluxes in tropical convection?
 1. → a low inclination train with three 1m MASTR (ESPA class) with only Ka and W, two of them in DPCA autonomous formation flying and one trailing them by 90 seconds to observe the change in storm structure at the convective time scale.
 Note: the pair of MASTR DPCA could be replaced by a pair of RainCube DPCA for cost savings, accepting some loss in capability (i.e., no scanning).

4. Fly in formation with the Aerosol TO Lidar to achieve only the Aerosol-Cloud components?
 1. → MASTR 3 m with W-band only, in loose formation similar to CloudSat/CALIPSO: formation flying requirements reduced and radar-lidar product quality improved because of the W-band swath (as opposed to nadir-only), high accuracy Doppler pursued only in the nadir beam, but meets the -30 dBZ sensitivity over a swath of 10-20 km.

5. Fly in smart-formation with a wide swath radiometer leading the train and target the MASTR narrow swath (as informed by the radiometer) to focus on weather of interest?

6. Fly in formation with a SmallSat SAR for multi-wavelength surface state observations?

7. ...
In both cases the W-band feed is at the focal point of the reflector, the Ka-band displace 2cm in one direction and the Ku-band displaced 4cm in the opposite direction.