

The High Altitude Lidar Observatory (HALO): A multi-function lidar and technology test-bed for airborne and space-based measurements of water vapor and methane

Amin Nehrir¹ Anthony Notari¹, David Harper¹, Fran Fitzpatrick², James Collins³, Susan Kooi³, Charles Antill¹, Richard Hare¹, Rory Barton-Grimley¹, John Hair¹, Richard Ferrare¹, Chris Hostetler¹, Wayne Welch⁴

¹NASA Langley Research Center

²Fibertek Inc.

³Science System & Applications, Inc

⁴Welch Mechanical Designs

Earth Science Technology Forum

Silver Spring, MD

June 12, 2018

Motivation

- New capability to measure H₂O profiles from <u>smaller</u> and <u>high altitude</u> airborne platforms
 - Currently: LASE is only capable of going on large aircraft (DC-8, and possibly P3, C130)
 - Development of more compact H₂O DIAL system with additional (CH₄) DIAL and HSRL measurement capabilities
- DIAL measurements along with measurements of aerosol/cloud properties combines many of the measurement requirements for airborne campaigns and satellite calibration and validation
- Flight demonstration of advanced lidar technologies on various airborne platforms

Use combined lidar profiles of water vapor, aerosols, and clouds to better understand...

- 1. Boundary layer processes (2017 Decadal Survey)
 - Shallow clouds, shallow and deep convection, convective aggregation, arctic mixed phase clouds, aerosol cloud interactions...
- 2. Weather and dynamics (2017 Decadal Survey)
 - Genesis and intensification of hurricanes, land-atmosphere feedbacks
- 3. Upper atmospheric transport and chemistry
 - Moistening of the stratosphere in a warming climate
- 4. Assessment and improvement of GCM and CRM and comparison of satellite data products

Combine lidar measurements of XCH₄, aerosols/clouds to better understand...

- 1. Quantify XCH₄ surface fluxes (2017 Decadal Survey)
 - Survey carbon stocks in warming Arctic (ABOVE) and tropics, survey oil and gas production....
- 2. Assessment and improvement of chemical transport models and comparison of satellite data products
 - Mixed layer vs free tropospheric mixing and transport
 - Validation of MERLIN CH₄ Lidar, TROPOMI

System Architecture

Interchange two common architecture lasers and single receiver to enable H_2O DIAL+HSRL or CH_4 DIAL+HSRL measurements

System Block Diagram

Detection and Acquisition Subsystems

NASA

Packaged APD detector modules

Packaged PMT/MCP detector modules

Power Acquisition and Control

Completed Receiver

- Three seed laser: 1064, 1645, 935 nm
 - Frequency stability, robust and compact packaging
- Two pulsed lasers: 1645, 935 nm
 - Transmit power, spectral purity, and robust packaging

Seed Laser: 1064 nm Architecture

- NASA
- 1 U 1064 nm laser for injection seeding both Fibertek OPO pump sources
- Frequency stabilized to I_2 absorption line at 532 nm using PDH approach
- 3 channel optical heterodyne between pulsed and seed lasers

Seed Laser: 1064 nm Performance

Seed Laser: 1645 nm Architecture

- 4 λ 1645 nm seed laser for injection seeding Fibertek CH₄ OPO
- Online wavelength locked to trough of CH₄ R6 doublet
- Master reference locked to R6 peak. Weighted to upper troposphere
- Sideline/offline offset locked with respect to master laser
- Fast electro-optic 4x1 optical switch used to sequentially injection seed OPO

Seed Laser: 1645 nm Performance

Online Locking Stability: Online/Master Beat note

Offline Locking Stability: Master/Offline Beat note

Seed Laser: 935 nm Architecture

- 4 λ 935 nm seed laser for injection seeding Fibertek H₂O OPO
- Stratospheric line (λ_1) locked to strong H₂O line using PDH method
- <u>Mid-troposphere line</u> (λ_2) offset locked ~ 40 GHz with respect to λ_1
- <u>Boundary layer line (λ_3) offset lock with respect to</u> (λ_2) . 1-19 GHz tuning range
- <u>Offline</u> (λ_4) offset locked ~ 41 GHz with respect to λ_3
- Fast electro-optic 4x1 optical switch used to sequentially injection seed OPO

λ_{1.} λ₄

 $\lambda_2 \lambda_4$

15

10

Seed Laser: 935 nm Performance

2U Fiber Engine

Fibertek Common Architecture Pulsed

Lasers

935 and 1645 nm lasers maintain common optical, mechanical, and electrical interfaces

Integrated 1645 nm Pulsed Laser

Fibertek CH₄ Laser Performance

- 1064 nm pump: 11 mJ, 1 kHz (11 W)
- 1645 nm OPO: 2.5 mJ (2.5W)
- Environmental testing (vibration and thermal)
- OPO and 1064 nm lasers both exhibit spectral purity > 3000:1 (validated in flight)
- CH₄ laser is integrated into system and flown on two separate campaigns

Fibertek 935 nm H₂O Laser Architecture

1064 nm Far Field Image

Oscillator Spectral Width

Fibertek 935 nm H₂O Laser Performance

- 1064 nm osc.+amplifier: 24 mJ, 1 kHz (24 W)
- 532 nm pump: 14 mJ, 60 % conversion efficiency
- 935 nm OPO: currently being built Target ≥ 3mJ

Simulated Performance (ER-2)

Simulated Performance (B200)

Integrated System: CH₄ Configuration

HALO CH₄ Config. Integrated on UC-12

Co-Hosted Payload

Spring 2018 CH₄ Check Flights

82[°]W 80[°]W 78[°]W 76[°]W 74[°]W 72[°]W

First Light: Integrated Path DIAL (IPDA) Channels

- Integrated path differential absorption (IPDA) measurement between transmitted energy signal and surface return
- High SNR over low albedo targets
- Integrating spheres used to sample transmitted energy
- Five independent calibration methods

Preliminary CH₄ IPDA Results

Atmospheric Products: May 12 2018

Preliminary Aerosol Products

 $log_{10}(P_{off}r^2)$

Preliminary CH₄ DIAL Products

Summary

- Developed and environmental tested three flight hardened seed lasers
- Developed high power and high spectral purity CH₄ pulsed laser
- Demonstrated spectral purity requirements in relevant aircraft environment
- Integrated and test multi-channel receiver
- Demonstrated first airborne CH₄ measurements using OPO laser on turbo prop aircraft

Future plans

- Deploy CH₄ configuration in Long Island Sound Ozone Study campaign
- Continue development of CH₄ retrievals and improvements to CH₄meas.
- Assess feasibility of integrating HgCdTe detector for clear air CH₄ meas.
- Complete development of H₂O pulsed laser in 2018
- Demonstrate water vapor measurements from B200 in 2019
- AITT to transition instrument to ER-2 and other platforms
 - Water vapor focused upper atmospheric/boundary layer process studies
 - Co-hosted payload with Differential Radar, wind lidar, and spectrometers
 - Serve as the U.S. MERLIN validation instrument

NASA

Water Vapor OPO: H₂O Profiles+HSRL (this program)

Er:YAG: CH₄+H₂O Profiles (ongoing tech development)

Reduction in Size Weight and Power

Airborne Science

Technology Maturation

Laser Transmitter for space-based water vapor lidar

PI: Tso Yee Fan / MIT Lincoln Laboratory

Objective

- Develop a space-based water vapor differential absorption lidar (DIAL) transmitter based on a Tm:YLF pulsed laser at 816 nm
 - Laser pulse energy ≥ 100 mJ
 - Double pulse repetition rate ≥ 50 Hz
 - Spectral purity >99.9%
 - Wall plug efficiency ≥ 5%
- Reduce the risk, cost, and development time of a future water vapor DIAL satellite instrument
- Revolutionize atmospheric remote sensing by developing laser technologies that will enable high resolution and accurate 3-D observations of water vapor profiles from space

Approach:

- Develop an efficient high power laser transmitter at 816 nm based on newly emerging Tm: YLF laser crystals
- Implement double pump-pulse operation and validate laser theoretical performance with varying pulse periods
- Implement laser injection seeding and cavity stabilization control system and validate that closedcycle cooled Tm: YLF can meet all key functionalities required for space-based DIAL systems
- Develop a hardened brassboard laser for future integration into the HALO lidar instrument as an airborne prototype for a future satellite instrument

Cols: Amin Nehrir, NASA LaRC; Steven Augst, MIT Lincoln Lab

Key Milestones

 First light, breadboard laser 	4/18
 100 mJ/pulse from breadboard laser 	9/18
• Unidirectional operation from breadboard laser	2/19
• Double pulse operation from breadboard laser	5/19
 Injection seeded, double pulse operation 	9/19
• Brassboard laser transmitter design complete	1/20
• Demonstrate fully functional brassboard	9/20

Demonstrate fully functional brassboard

 $TRL_{in} = 2$

Acknowledgments

This work is supported by NASA ESTO and the Earth Science Division Research and Analysis program. We thank Fibertek Inc. for their dedicated support and internal investments on the laser development effort. We also thank NASA Langley Research Center for internal support.