

REMI - Reduced Envelope Multi-Spectral Imager for Sustained Land Imaging

Paula Wamsley, PI A. Scotty Gilmore, PM Earth Science Technology Forum June 2017

LOS motion on ground

LandSat: An Early & Enduring Earth Observation Mission

Landsat Data are Widely Distributed for Use in Science Research and Applications

https://landsat.usgs.gov/top-ten-uses

Sustainable Land Imaging Program

Sustainability Continuity Reliability

The goals of the SLI-T program are to research, develop, and demonstrate new measurement technologies that improve upon the Nation's current land imaging capabilities while at the same time reducing the overall program cost for future SLI measurements.

The SLI-T program seeks to:

- Reduce the risk, cost, size, volume, mass, and development time for the next generation SLI instruments, while still meeting or exceeding the current land imaging program capabilities;
- Improve the temporal, spatial, and spectral resolution of SLI measurements; and
- Enable new SLI measurements that can improve the program's operational efficiency and reduce the overall costs of the Nation's land imaging capabilities.

Landsat 8/9 Top Level Architecture

Landsat Mission Operations Request for Information Industry Day, Floyd, V. & Nelson, J., USGS 2/2/2016.

Landsat 8 Space Segment - Sensors

Parameter	OLI	TIRS		
Mass (kg)	470	236		
Envelope Vol. (m ³)	6.5	2.0		
GSD (m)	30 (15 PAN)	100		
Sensor Type	Pushbroom	Pushbroom		
X-track Angular FOV (°)	15 (185 km)	15 (185 km)		
Wavelength (mm)	0.4–2.4	10–13		
FPA	SiPIN (VNIR), HgCdTe (SWIR)	QWIP (Thermal), Actively cryo-cooled		
Primary Calibration	On-board solar diffuser	On-board blackbody		

ö
õ
ã
S
0
5
Ŷ
٩,
=
g
\sim

Ball Aerospace

Price	% of Mission						
\$555.1M	56.9%						
\$157.1M	16.1%						
\$184.3M	18.9%						
\$78.2M	8.1%						
\$974.7M	100%						
	Price \$5555.1M \$157.1M \$184.3M \$78.2M \$974.7M						

LandSat 8

Earth Science Technology Forum, June 2017

NASA

REMI Design Concept Guided by NASA/USGS Architecture Studies

Earth Science Technology Forum, June 2017

What is an Architecture?	
Payload	
Spacecraft	
Launch	
Technology Infusion Plan	
Mission Risk Class	
Org Partnerships	č
Procurement Approach	
Architecture Trade Space	
Same haved Sustaine	

ractices SC + LV

Hands Off Turn-Key Block Buys

Data Buy

Sole Source

Class D+

Scan Approach Opens the Design Space

- Whisk Broom: LandSat 1-7
- Push Broom: LandSat 8 & 9
- Step-Stare with Image Motion Correction: SLI-T/REMI

Comparison of three different scan methodologies: Whisk Broom, Push Broom, and Step-Stare.

Performance Model Developed to Guide Design Trades

MODEL INPUTS

Scan

Flight

System

Reqs

Detector **Physics**

Model

Spectral

Radiance

Optical Throughput

Derivation of REMI Reqs from SLIT RMA

	SLIT Requirements from Reference Mission Architecture					REMI Requirements (4,000 m AGL)								
Band #	Band Name	Nominal GSD (m)	Min Edge Slope (m ⁻¹)	Min Edge Slope (µrad-1)	Max Half Edge Extent (m)	Max Half Edge Extent (μrad)	Nominal GSD ¹ (m)	Predicted GSD ¹ (m)	Equivalent GSD ¹ (m)	Min Edge Slope ² (m ⁻¹)	Min Edge Slope ² (μrad ⁻¹)	Max Half Edge Extent ² (m)	Max Half Edge Extent ² (μrad)	Max Aliasing ⁴
1	Coastal Aero	30	0.027	0.0190	23.0	32.6	0.168	0.069	12.1	4.7588	0.0190	0.13	32.6	1.0
2	Blue	30	0.027	0.0190	23.0	32.6	0.168	0.069	12.1	4.7588	0.0190	0.13	32.6	1.0
3	Green	30	0.027	0.0190	23.0	32.6	0.168	0.069	12.1	4.7588	0.0190	0.13	32.6	1.0
4	Red	30	0.027	0.0190	23.5	33.3	0.168	0.069	12.1	4.7588	0.0190	0.13	33.3	1.0
5	NIR	30	0.027	0.0190	24.0	34.0	0.168	0.069	12.1	4.7588	0.0190	0.14	34.0	1.0
6	SWIR 1	30	0.027	0.0190	28.0	39.7	0.168	0.168	29.6	4.7588	0.0190	0.16	39.7	1.0
7	SWIR 2	30	0.027	0.0190	29.0	41.1	0.168	0.168	29.6	4.7588	0.0190	0.16	41.1	1.0
8	Pan	15	0.027	0.0190	14.0	19.9	0.168	0.069	12.1	4.7588	0.0190	0.08	19.9	1.0
9	Cirrus	30	0.027	0.0190	27.0	38.3	0.168	0.168	29.6	4.7588	0.0190	0.15	38.3	1.0

All VSWIR Spectral Bands Demonstrated

Full VSWIR optical solution for SLI-T demo

- Proposal: 4 visible bands and 2 SWIR bands
 - Demonstrate step-stare approach
 - Multiple optical paths with single aperture
- Baseline: Enable all 5 visible bands, the Cirrus band and both SWIR bands

TABLE A.2 SLI-T REFERENCE MISSION SPECTRAL IMAGE PERFORMANCE REQUIREMENTS

Band #	Band Name	Band #	Center Wavelength (nm)	Center Wavelength Tolerance (nm)	Minimum Lower Band Edge (nm)	Maximum Upper Band Edge (nm)
1	Coastal Aerosol	1	448	2	443	453
2	Blue	2	482	5	450	515
3	Green	3	562	5	525	600
4	Red	4	655	5	630	680
5	NIR	5	865	5	845	885
6	SWIR 1	6	1610	10	1560	1660
7	SWIR 2	7	2200	10	2100	2300
8	Panchromatic	N/A	590	10	500	680
9	Cirrus	9	1375	5	1360	1390
10	Thermal 1	N/A	10800	200	10300	11300
11	Thermal 2	N/A	12000	200	11500	12000

VNIR Optical Path

SWIR Optical Path

TIR Optical Path

- Initial packaging complete
- The VNIR and SWIR channels can be packaged within the allocated volume.
- Inclusion of the TIR Channel will likely cause the system to exceed the space allocation and may require a larger baseplate to hold all three channels (still a manageable option)

Earth Science Technology Forum, June 2017

(OLI equivalent VIS IFOV = 42 urad)

Scan Modeling (On-Orbit Case)

(OLI equivalent VIS IFOV = 42 urad)

Calibration Approach

- Absolute calibration performed during ground testing with NIST traceable sources (blackbody & lamps)
- Relative calibration in airborne configuration that has been scaled against absolute calibration on ground
- Heliostat testing (fall 2018) for direct comparison to OLI2 (LandSat9)

Heliostat Testing Provides Direct Comparison with OLI

- Solar source provides realistic spectral profile for direct comparison between REMI and OLI
- OLI planned Heliostat testing is Fall 2018
- REMI positioned outside the chamber so that the beam is folded the opposite direction for testing without cleanliness and feedthrough requirements
- University of Arizona is contracted for OLI to perform atmospheric transmission measurements during Heliostat testing from roof

Solar beam on

chamber

Tracking Gimbal

Airborne Stability Monitoring

- Broadband light source & fiber optic
- Diffuse Lambertian light from engineered diffusor
- Mirror on back of external shutter in "closed" position
- Relative calibration in-flight (stability)

Earth Science Technology Forum, June 2017

Acknowledgements

- Funding from ESTO/SLI-T, Contract No. NNX16AP63G
- Ball Team:
 - Tom Kampe, Optics
 - Bob Warden, Mechanical
 - Kyle Solander, Electronics
 - Jonathan Fox, Software
 - Homero Gutierrez, Scan Mechanism
 - Lyle Ruppert, L1B Data Processing
 - Bill Good, Aircraft Ops

THANK YOU!