The RAVAN CubeSat Mission: On-Orbit Demonstration

<u>William H. Swartz</u> (JHU/Applied Physics Laboratory)¹ Steven R. Lorentz,² Philip M. Huang,¹ Allan W. Smith,² James Briscoe,² Edward L. Reynolds,¹ John Carvo,³ and Dong L. Wu⁴

 ¹Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland 20723 USA
²L-1 Standards and Technology
³Blue Canyon Technologies
⁴NASA/Goddard Space Flight Center

Funding: InVEST Program, NASA Earth Science Technology Office

RAVAN, one year ago

APL

(EEI = Earth Energy Imbalance) **EEI is most important quantity for climate change**

- The small imbalance (~1 W/m²) between incoming solar irradiance and Earth outgoing energy (solar reflected + Earth's black body emission) drives climate change
- Current space-based assets cannot quantify Earth's outgoing radiation well enough to resolve EEI

Black Body Emission Curves of the Sun and Earth

TSI = Total Solar Irradiance TOE = Total Outgoing Energy EEI = Earth Energy Imbalance

TSI/4 – TOE = **EEI ≈** +1 W/m²

What we need is a space-based constellation for TOE

- Accurate, un-tuned measurements of TOE
- Global, simultaneous, 24/7 coverage
- Diurnal sampling of rapidly varying phenomena
 - Clouds
 - Plants
 - > Ozone/photochemistry
 - > Aerosols

RAVAN -

The maturation of smallsat/hosted payload and constellation technology provides an opportunity for taking a big step forward in Earth energy budget science. RAVAN is a pathfinder for a future EEB constellation.

(TOE = Total Outgoing Energy)

RAVAN timeline

- Nov-12 RAVAN proposal submitted
- Apr-13 RAVAN selected
- Nov-13 CubeSat Launch Initiative (CSLI) proposal submitted
- Feb-14 RAVAN selected for CSLI launch (TBD)
- Apr-14 Payload CDR
- Dec-14 Decision on bus (BCT selected)
- Jul-15 Bus CDR

- Feb-16 RAVAN becomes "back-up" on commercial launch
- May-16 RAVAN is officially manifested for launch
- Jun-16 Payload delivered to BCT for I&T
- Aug-16 RAVAN delivered to Cal Poly for LV integration
- Nov-16 Launch

tegration

Basic design concept

- Treat as simple irradiance measurement
 - > Thermal detectors with spectrally flat black absorbers and precision apertures
- Redundant Total (2x) and SW (2x) channels
 - Sapphire dome used as shortwave filter
- Primary radiometers: vertically aligned carbon nanotubes (VACNTs) on Si
 - > Compact radiometer with better sensitivity for a given time constant
 - Good but not perfect absorber
 - > Potential degradation due to contamination
- Secondary radiometers: Black painted conical Cu cavity
 - "Old" tech
 - Less subject to contamination
 - > Degradation monitor for primary radiometers
 - > Proves performance of primary
 - > Provides redundancy (risk mitigation)
- <u>*Gallium black body emitter</u>
 - > Transfer standard for Total channels
 - > Degradation monitor of both primary and secondary Total channels
 - Ga BB coupled with solar and space looks gives offset and degradation monitoring

*Technology demonstrations

Technology objective #1: Carbon nanotubes

Technology objective #2: Gallium black bodies

ADI

Payload very compact (<1U)

- Pair of two-channel differential **bolometric sensors**
 - Pair #1: VACNT absorber
 - > Pair #2: Cavity absorber
- - > UV to 200 µm
- Shortwave channels (2)
 - > Sapphire domes (2)
 - UV to ~5.5 µm
- Fixed-point gallium BBs in covers (2)
- Reusable doors must open to clear radiometer 130° fields of view (FOVs) and lock tightly for launch
- Radiometers thermally isolated from spacecraft and actively temperature controlled
- SMaP (payload only)
 - > Size (volume): <1 U
 - Mass: <1 kg
 - Power: ~1.9 W (average)

Payload flies on a 3U CubeSat

Sunny side

Shady side

- Using Blue Canyon Technologies XB3 3U bus (their first spacecraft!)
 - Integrated XACT ADCS (also flew on MinXSS, deployed from the ISS in May 2016), GN&C for 3-axis control, GPS receiver
- Need attitude control for nadir/solar/deep space observations
- BCT: Payload I&T, LV integration, mission operations

Successfully launched and operating

Launch: Nov 11, 2016

- > Atlas V, Vandenberg AFB
- > Orbit: ~600 km, sun-sync
- As of June 15, 2017:
 - # days on orbit: 216
 - > # orbits: 3,231
 - > # UHF overpasses: 864

11

Payload data not continuous but providing what we need

Ga transitioning "on its own" due to orbital temperature variation

Temperature measurement near Ga cell

Controlled Ga transitions, as viewed by radiometers

Data for the radiometer total channels

First light: The VACNT and cavity radiometers track very well

What's next?

Next steps:

- Data analysis!
- Degradation monitoring
- LaRC visit

Summary: RAVAN as pathfinder

- RAVAN has met most mission objectives already
 - Collected enough data for basic technology demonstration
 - > We have data for preliminary absolute calibration
 - More data needed for refinement and longer-term stability
- Looking forward to more analysis and measurements

