SLI-T Integrated Photonic Spectrometer

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

June 14, 2017

Stephanie Sandor-Leahy (PI/PM) Richard Davis, Augusto Gutierrez-Aitken, Dan Kultran, Lushalan Liao, KK Loi, Dennis Scott, Wayne Yoshida

- Approach and component demonstrations
- ESTO study EVEREST simulations
- ESTO SLI-T status

Photonic Spectrometer Approach

NGAS Program for Waveguide Filter Development

NG Detector and Integration Capabilities

	NG Demonstrated		NG Demonstrated
Device type / configuration	 PIN photodiodes Schottky diodes Avalanche photodiodes Photo-transistors Quantum wells and graded superlattices Type-II tunnel diodes Wavequide filters and gratings 	Device layout	 Mesa diode Surface normal coupled with front- or back- illumination Edge coupling to diode or waveguide Discrete and array of diodes
Material systems	Lattice-matched, strained, and metamorphic materials: InP/InGaAs GaAs/AlGaAs InP/InAlAs/InGaAs/InAlGaAs/ InGaAsP/InGaAsSb InAs/GaSb/AlSb/AlGaSb/InAlA	- Integration capabilities	 DAHI integration Monolithic integration through epitaxial design Regrowth of multiple epitaxial device structures on same substrate

Spectrum Coverage

SLI-T PIN Photodiode

Waveguide Photodiode

Black Diamond: Waveguide-Detector Integration

 Black Diamond program demonstrated waveguide/detector integration using NG heterogeneous integration processes

6 Photodetector chiplet layout

BDD12A-2-1: short-flow minesweeper lot using 100mm GaAs mechanicals

GRUMMAN

Detector SEM Image

Detector MMIC

Initial Integration of Detector on Si Waveguide

Successfully integrated photodetector chiplets on to the Si waveguide wafer

Photodiode Integration Demonstrations

Photodiode Microscope Image

Detector-Waveguide Overlay Image

Filter Response for Single-Filter Devices

Device W10-v-3-A

Device W10-v-1-A

ESTO Rapid Response Study

- Study focused on developing designs and performance estimates for key system elements:
 - Telescope
 - Coupling efficiency as a function of wavelength and lenslet focal length
 - Optical throughput and system Signal-to-Noise
 - NGAS band aggregation algorithms

EVEREST HSI Band Aggregation Simulation

NGAS Core Mission Evaluation Capability Environmental Verification and Remote Sensing Testbed

NORTHROP GRUMMAN

EVEREST is a Core Capability to Support Mission Concept Evaluation and System Development

EVEREST for Land Imaging Basis for High Value End to End Simulations

NGC EVEREST Leverages Many Community Standards

Approved for public release; NG 17-1224 dated 6/8/17.

SLI-T Program

- Currently in first year of a 5-year development program funded by NASA ESTO to build and test a heterogeneously integrated photonic instrument
 - Covers two SLI bands: Band 9 (1.36 – 1.39µm at 3nm resolution) and Band 6 (1.56 – 1.66µm at 6nm resolution)
 - Scalability to SLI VNIR and SWIR bands
 - Integrate NGAS novel ROIC
 - Radiometric performance estimates and testing

- Spectral range 1360 to 1390 nm
- $\Delta \lambda = 3$ nm, 10 filters per pixel
- # of x-track pixels 128, Pixel spacing 30µm
- Active area: 3.84mm x 13.1mm

• Planned exit TRL = 6

Detector Chiplet Design

Structural HICs

- Detector chiplet fabrication initiated
 - Each chiplet contains 32 detectors, metal interconnect, HICs, alignment marks
 - Multiple versions of chiplet per wafer with different detector sizes and offset

Detector Tiling Pattern

- SLI-T waveguides in fabrication
- Next step is waveguide/detector integration

****		* * * *
++		da + +
	·	
****		** **
****		** **
* * * * • • • •		** **
****		** **
****		** **
****		** **
* * * *		** **
****		** **
* * * *		** **
* * * *		
****		** **
****		44 44
		** **
****	▃▃▃┛║║║┎═	
****		** **
		+ +
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
++ u =		
****		* * * *

Approved for public release; NG 17-1224 dated 6/8/17.

Detector Chiplet

THE VALUE OF PERFORMANCE.

