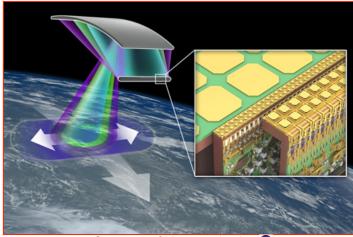


Multi-Application Smallsat Tri-band Radar - MASTR

Mauricio Sanchez Barbetty¹ Gregory Sadowy¹ Simone Tanelli¹ Eva Peral¹ Andrew Brown² Benjamin Cannon³ Ken Vanhille³

Propulsion Laboratory, California Institute of Technology.
 2 Raytheon
 3 Nuvotronics Inc.


© 2017, California Institute of Technology. U. S. Government sponsorship acknowledged

Why MASTR?

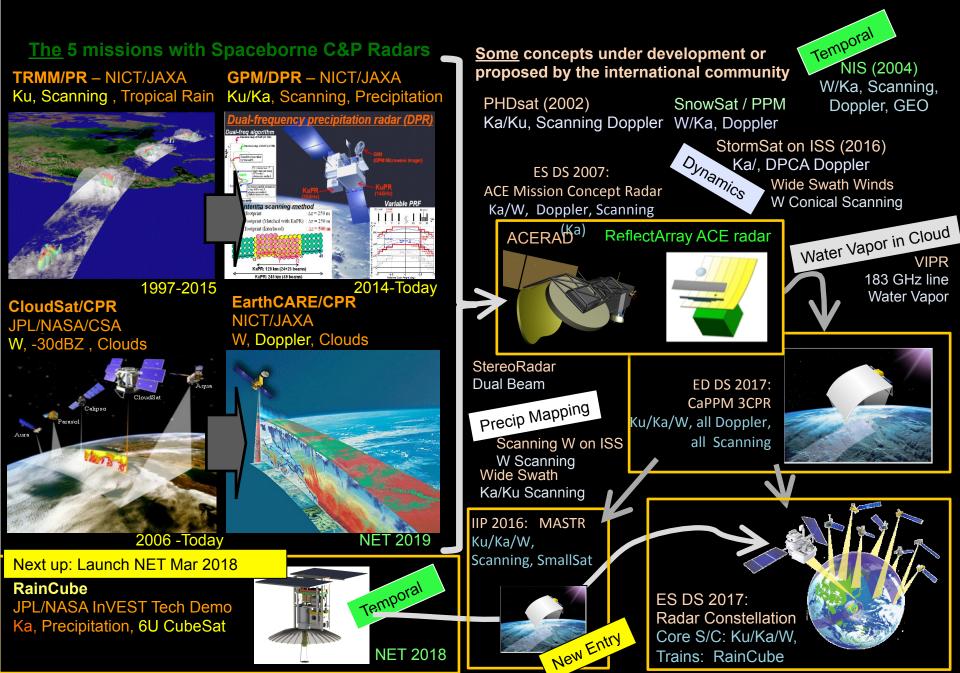
Clouds and Precipitation

- Addressed separately by active instruments so far (i.e., TRMM, GPM & RainCube at Ku and Ka band, vs CloudSat and EarthCARE at W-band).
- Three-frequency single aperture radar enables
 holistic view of the cloud-precipitation process
 - e.g., J. Leinonen, et al. 2014, ACE decadal survey mission concept (Ka- / W-band), Cloud and Precipitation Processes Mission (CaPPM) concept. (Ku-, Ka-, W-band) responses to Decadal Survey 2017.
- Technology maturity over the last decade enables scanning at W-band as well as tri-band integration

Courtesy of Nuvotronics Inc.

Altimetry and Scatterometry

- Once an RF front end for a Ku/Ka-/W- real aperture scanning radar is available, making it suitable for other applications is possible.
 - For altimetry it is "only" a matter of opening up the bandwidth ;
 - For scatterometry more significant changes are necessary, but still possible (i.e., changing viewing geometry and tightening calibration requirements)


MASTR is tri-band (Ku-, Ka-, W-band) scalable phased array radar.

Designed to work as a Cloud and Precipitation Radar,

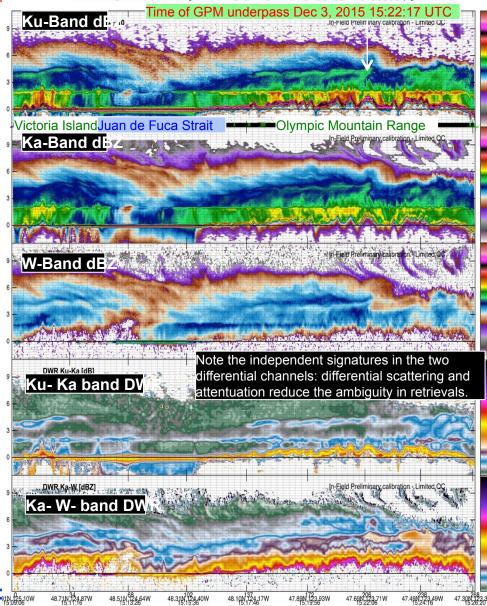
an Altimeter, or a Scatterometer (in a Spinning platform).

A modular, scalable architecture enables technology maturation via an airborne demonstration. A compact profile allows multiple implementations depending of mission requirements, power, and budget available (ranging from SmallSats to large platforms).

Spaceborne "Tropospheric Radar" landscape (2017)

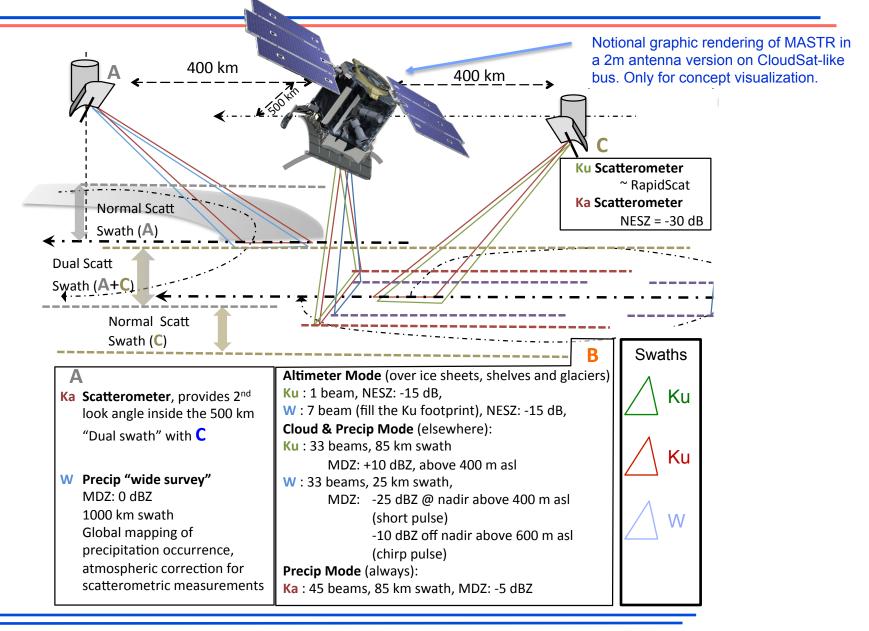
Recent GPM/ACE joint Experiments

The GPM ground validation program and the ACE Science Working Group have successfully completed two joint projects where multi frequency cloudprecipitation radar data were acquired:


- IPHEX/RADEX'14, N. Carolina, May/Jun 2014
- **OLYMPEX/RADEX'15**, Washington, Nov/Dec 2015. W. Petersen, M. Schwaller, J. Mace, R. Marchand. A. Barros, R. Houze, L. McMurdie and many other.

GPM exploits the multi frequency radar data to better constrain the validation of GPM retrievals. ACE seeks to demonstrate and refine the definition of the radar for the ACE mission.

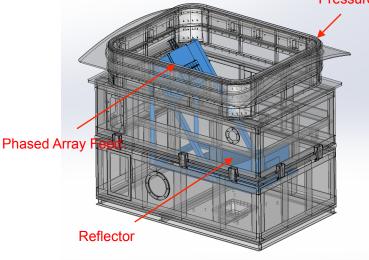
APR-3 (S. Durden, PI, ESTO/AITT Program) is the first 3-frequency (Ku, Ka, W), scanning, Doppler, airborne radar.


One example of the data acquired (preliminary calibration) is shown from a direct GPM/DPR underflight on Dec 3, 2015.

APR-3 is an airborne proxy to **3CPR** and **MASTR**.

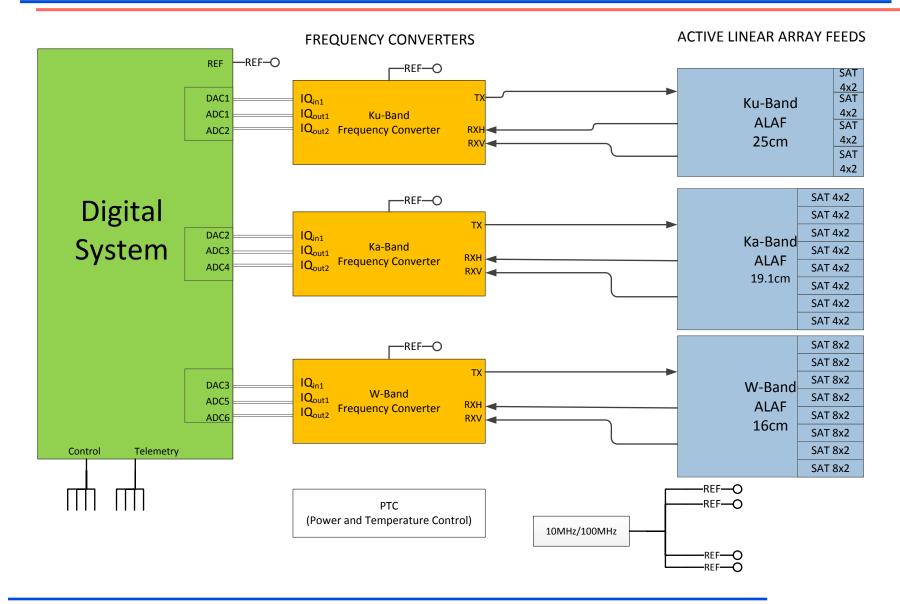
One possible mission configuration for MASTR

AirMASTR Instrument

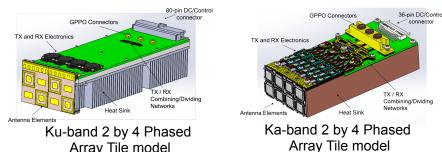

- Airborne demonstration of MASTR.
- The modular architecture enables a demonstration with a scaled version of MASTR focused on raising the TRL of the subsystems.
- AirMASTR will be capable of Ku/Ka/W-band scanning, Doppler, and polarimetry.
- Reflector size 30cmx50cm.
- Digital electronics based on Raincube.
- Direct frequency conversion.
- Platform: NASA DC-8.

	Ku-band	Ka-Band	W-Band
Number of Tiles	4	8	8
Total Number of Transmit elements	16	32	64
Array Peak Transmit Power	320W	160W	96W
Array width [mm]	256mm	176mm	158.4mm

Courtesy of Nuvotronics Inc. Tri-band Phased Array Feed

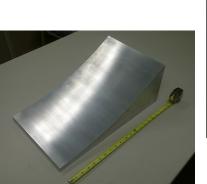

Pressure box

Feed reflector model inside the DC8 pressure box


AirMASTR Block Diagram

Resources

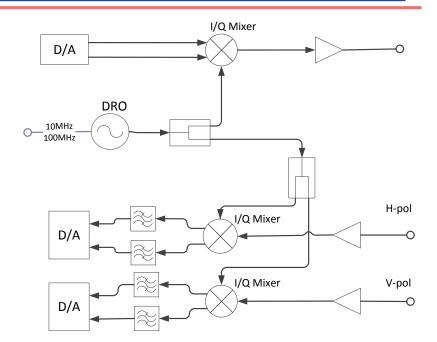
- Ku/Ka-Band Scanning Array Tiles
 - Based on design made by Nuvotronics under SBIR Phase II contract: NNX15CP18C.
 - Nuvotronics is on contract to develop Ku-band and Ka-band SATs for AirMASTR.
- W-band Active Linear Array Feed
 - Under development by 3CPR IIP-13, PI Sadowy
- Phased Array Integration
 - Co-I Andrew Brown Raytheon
- Digital Electronics Subsystem
 - Based on Raincube's architecture.
 - Modifications of Trident's Space qualifiable digital transceiver, developed under SBIR NNX14CP10C
- Frequency converters
 - Currently under development at JPL.
- Parabolic reflector
 - 3CPR IIP-13, P.I. Sadowy
- NASA DC8
 - Engaged NAFRC Payload Engineer Adam Webster.

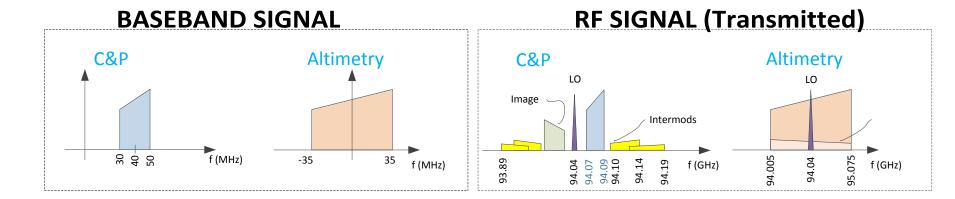


Array Tile model

Courtesy of Nuvotronics Inc.

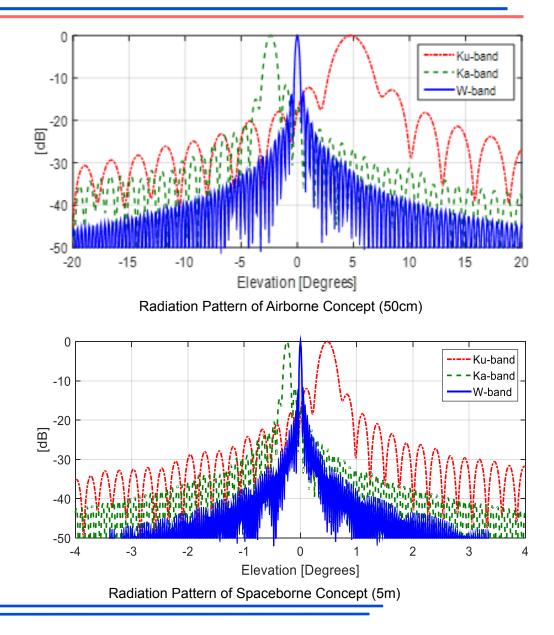
W-band 2x8 Phased Array Tile prototype


Space Qualifiable Digital Radar Transceiver


Reflector

Frequency Converters

- Direct up and down conversion based on Raincube frequency conversion.
- Single stage conversion reduces number of components, mass, power.
- C&P mode uses offset baseband. The offset displaces intermodulation products in frequency to enable digital filtering on receive.
- Altimetry high bandwidth is achieved by centered base-band. In band intermodulation products do not affect performance requirements for Altimetry.


Scanning Array Tile Specifications

	Ku-band	Ka-band	W-band
Frequency Response	13.4GHz	35.75 <i>G</i> Hz	94GHz
Power handling	20W per radiating element.	5W per radiating element	1.5W per radiating element
Elements per tile	2x4	2x4	2×8
Polarization	Transmit Horizontal Receive Horizontal Receive Vertical	Transmit Horizontal Receive Horizontal Receive Vertical	Transmit Horizontal Receive Horizontal Receive Vertical
Transmit Duty Cycle	<10%	<10%	<10%
Electronic scanning	±4.5 degrees	±12 degrees	±10 degrees
Size	64mm wide 44mm tall 175mm deep	22mm wide 16mm tall 54mm deep	19.8mm wide 10mm tall 127mm deep

Antenna Reflector Scaling

In both cases the W-band feed is at the focal point of the reflector, the Ka-band displace 2cm in one direction and the Ku-band displaced 4cm in the opposite direction.

END

BACKUP SLIDES TO FOLLOW

