

 \bigcirc

TENDEG

Ka Band Highly Constrained Deployable Antenna for RainCube

Presenter: Yahya Rahmat-Samii Distinguished Professor EE Dept. UCLA

Key Contributors

Yahya Rahmat-Samii: UCLA PI responsible for overall program management, development of the algorithms for parametric characterization of mesh reflector antenna and the feed horn

Eva Peral: JPL PI responsible for vendor interfaces, integrations and measurements

JPL Co-Is: Richard Hodges, Simone Tanelli, Jonathan Sauder

UCLA Student/Postdoc: Vignesh Manohar, Joshua M. Kovitz

Gregg Freebury:

Tendeg LLC, responsible for the antenna development and prototyping

A Recent Review Paper on CubeSats IEEE Antennas and Propagation Magazine, April 2017

VOL. 59 / NO. 2 / APRIL 2017

For Satellites, Think Small, Dream Big

A review of recent antenna developments for CubeSats.

Yahya Rahmat-Samii, ¹ Vignesh Manohar, and Joshua M. Kovitz A dvances in modern technology have aided the development of a class of mintaturized satellites called SwallSate that typically weigh less than 500 kg. Key members of this family are CubeSats. CubeSats can weigh as little as 1.23 kg, with a typical volume of $10 \times 10 \times 10$ cm². Their potential has motivated the actentific community to revisit existing spacecraft technologies to make them suitable for CubeSats.

This work particularly focuses on GobeSat antenna development. An entensive literature study is presented to survey the current state of the set in GobeSat antenna systems. We summarize several recent GobeSat missions and describe antennas that have been used in past GobeSat launchess. We also discuss recent antenna research that can enable many eaching missions in the future.

THE RISE OF CUBESATS

For many years, smaller was not an option for the satellite industry. The stringent radio-frequency (RF) requirements for high-performance satellities to deliver the destred quality of service demands very heavy payloads. The typical timeframe for such large, conventional satellities is more than five years from proposal to launch, with a cost ranging from US\$100 million to US\$2 billion

SMALLSATS AND CUBESATS

Recent Innovations Involving Antenna Systems

Guest Editor: Yahya Rahmat-Samii 6-13-17

SMALLSATS: A VIABLE TECHNOLOGY FOR EARTH OBSERVATION AND INTERPLANETARY MISSIONS

PROPAGATION

EEEAntennas&

Deput Object Membre 10.1100/MAP 2017 2022502 Date of Philameters 22 February 2017

The Big Picture: Needing larger antennas

Achieving the future challenging science requirements for remote sensing

Skm radar footorint

Current 0.5m design:

Too small for future science needs. This symmetric design could not be extended beyond 0.5 m.

Bringing the TRL of the 1.0 m antenna design from 3 to 5.

CubeSats: Genie in the bottle! Future of low cost missions 1.5U and 2.5U

Requires extremely chalenging antenna designs for high gain applications!

Ka-Band Deployable Antenna for CubeSats: Recent Collaborative Design with JPL

1.5 U

Frequency = 35.75 GHz

0.5 m diameter

Unfortunately this rib packaging design could not be extended to 1.0 m.

A Novel Offset Mesh Deployable Reflector Configuration allowing for Larger Reflectors

About 2.5 U

Science community desires 1.0 m antennas

1.0 m projected aperture after deployment.

In the process of RF design of a mesh deployable reflector antenna many questions need to be answered

Effects of the mesh

Surface rms

point

Effects of boundary truncation

Number of ribs

This is best represented by various efficiency components:

 $\eta = e \eta_t \eta_s \eta_b \eta_p \eta_{sq} \eta_{rms} \eta_g \eta_{tr} \eta_m \eta_{sc} \eta_{vswr} \eta_{st} \eta_{bl} \eta_{um}$

Breadboard of 1.0 m Offset Mesh Antenna

Tendeg LLC's tensegrity design utilizing spiral wrapped ribs as the compression members and tensioned offset dual nets.

A Potential Mesh Surface Under Development

30 OPI gold plated wires

Detailed Analysis of Complex Mesh Surfaces

Equivalent Wire Grid model for complex knits

Analytical formulation

Strip Wire Equivalence: $Diameter \ of \ wire(D) = \frac{Strip \ Width(W)}{2}$

	ΔG (dB)		
OPI	Tricot knit mesh	Wire grid model	
		D=0.0008 "	D=W/2
20	-0.56	-2.53	-0.42
30	-0.19	-1.01	-0.19
40	-0.09	-0.47	-0.10
R	eferenc	e Bad	Good

Good match is seen between the complex knit surface and the EQUIVALENT wire grid model for normal incidence

Novel Optimized Profiled Feed Horn Design

Standard horn designs could become large and not satisfying the desired performance requirements.

Many other options are available to horn designers, but not all designs fit the requirements

The spline profile allows to generalize the profile and apply optimization to meet the requirements

Splines can also be defined to satisfy certain analytical conditions such as monotonicity, etc to ease fabrication

Particle Swarm Optimization (PSO): Optimized miniaturized profiled feed horn

Convergence

L = 4.6 cm

Inside is profiled

Horn Measurement at UCLA mm-wave Bi-polar Planar Near-Field Facility

A table-top mm-wave chamber at UCLA

Configure Vector Network Analyzer (VNA) & Motor Controller from a Master Computer Controller

Feed Far Field Patterns from Measured Near Field

6-13-17

Tendeg's Initial Surface Measurements and Representative Antenna Profile

Reflector surface measurements

Surface profile based on measurements

Ideal vs. Non-ideal Simulated Reflector Patterns at 35.75 GHz

Non-ideal Surface profile based on measurements

Directivity and Beamwidth Table

	CAD model	Ideal Reflector	
Directivity at boresight	50.06 dB	50.15 dB	
HPBW (E-plane)	0.56°	0.56°	
HPBW (D-plane)	0.56°	0.56°	
HPBW (H-Plane)	0.57°	0.56°	
Note: Actual gain, yet to be measured, will			

be lower than directivity.

Measurement Campaign at JPL Antenna Near Field Range before the End of 2017

GSE Support Structure

- Provide gravity offload
- Simulate RF scattering of typical s/c

JPL Planar Nearfield Scanner

- Proven Ka-band test facility
- AUT is stationary simplifies gravity offload
- Indoor measurement no thermal, wind load or weather issues
- Compatible with metrology equipment

 \bigcirc

Ka Band Highly Constrained Deployable Antenna for RainCube

We are very excited about this project and foresee breakthrough developments in many fronts.

Presenter: Yahya Rahmat-Samii Distinguished Professor EE Dept. UCLA

Thank you

