Ka Band Highly Constrained Deployable Antenna for RaInCube

Presenter:
Yahya Rahmat-Samii
Distinguished Professor
EE Dept. UCLA

1.0 m antenna in 2.5U!
Key Contributors

Yahya Rahmat-Samii: UCLA PI responsible for overall program management, development of the algorithms for parametric characterization of mesh reflector antenna and the feed horn

Eva Peral: JPL PI responsible for vendor interfaces, integrations and measurements

JPL Co-Is: Richard Hodges, Simone Tanelli, Jonathan Sauder

UCLA Student/Postdoc: Vignesh Manohar, Joshua M. Kovitz

Gregg Freebury: Tendeg LLC, responsible for the antenna development and prototyping
A Recent Review Paper on CubeSats
IEEE Antennas and Propagation Magazine, April 2017

For Satellites, Think Small, Dream Big
A review of recent antenna developments for CubeSats.

Yahya Rahmat-Samii, Vignesh Manohar, and Joshua M. Kovitz

A rise to modern technology has enabled the development of a class of nanosatellites called CubeSats that typically weigh less than 500 kg. Key members of this family are CubeSats. CubeSat can weigh as little as 1.35 kg, with a typical volume of 10 × 10 × 10 cm³. Their potential has motivated the scientific community to revisit existing spacecraft technologies to make them suitable for CubeSats.

This work particularly focuses on CubeSat antenna development. An extensive literature study is presented to survey the current state of the art in CubeSat antenna systems. We summarize several recent CubeSat missions and describe antennas that have been used in past CubeSat launches. We also discuss recent antenna research that can enable many exciting missions in the future.

THE RISE OF CUBESATS
For many years, smaller was not an option for the satellite industry. The stringent radio-frequency (RF) requirements for high-performance satellites to deliver the desired quality of service demands very heavy payloads. The typical timeframe for such large, conventional satellites is more than five years from proposal to launch, with a cost ranging from US$400 million to US$8 billion.
The Big Picture: Needing larger antennas

Achieving the future challenging science requirements for remote sensing

Freq. = 35.75 GHz

Current 0.5m design:

Too small for future science needs. This symmetric design could not be extended beyond 0.5 m.

New 1.0 m offset design

400km LEO orbit

Bringing the TRL of the 1.0 m antenna design from 3 to 5.
CubeSats: Genie in the bottle!
Future of low cost missions 1.5U and 2.5U

Requires extremely challenging antenna designs for high gain applications!
Ka-Band Deployable Antenna for CubeSats: Recent Collaborative Design with JPL

Unfortunately this rib packaging design could not be extended to 1.0 m.

Frequency = 35.75 GHz

1.5 U

0.5 m diameter
A Novel Offset Mesh Deployable Reflector Configuration allowing for Larger Reflectors

Science community desires 1.0 m antennas

1.0 m projected aperture after deployment.
In the process of RF design of a mesh deployable reflector antenna many questions need to be answered.

Effects of the mesh

Surface rms

Optimal focal point

Effects of boundary truncation

Number of ribs

This is best represented by various efficiency components:

\[\eta = e \eta_t \eta_s \eta_b \eta_p \eta_{sq} \eta_{rms} \eta_g \eta_{tr} \eta_m \eta_{sc} \eta_{vswr} \eta_{st} \eta_{bl} \eta_{um} \]
Breadboard of 1.0 m Offset Mesh Antenna

Tendeg LLC’s tensegrity design utilizing spiral wrapped ribs as the compression members and tensioned offset dual nets.
A Potential Mesh Surface Under Development

30 OPI gold plated wires
Detailed Analysis of Complex Mesh Surfaces

Simple wire grid model

Hard contact

Soft contact

Complex knits

3D models

YRS 6-13-17
Good match is seen between the complex knit surface and the EQUIVALENT wire grid model for normal incidence.
Many other options are available to horn designers, but not all designs fit the requirements.

The spline profile allows to generalize the profile and apply optimization to meet the requirements.

Splines can also be defined to satisfy certain analytical conditions such as monotonicity, etc to ease fabrication.

Standard horn designs could become large and not satisfying the desired performance requirements.
Particle Swarm Optimization (PSO):
Optimized miniaturized profiled feed horn

L = 4.6 cm
D = 2.0 cm

Inside is profiled.
Horn Measurement at UCLA mm-wave Bi-polar Planar Near-Field Facility

A table-top mm-wave chamber at UCLA

 Probe
Optimized Feed Horn

3D Printed brackets

Configure Vector Network Analyzer (VNA) & Motor Controller from a Master Computer Controller

YRS 6-13-17
Feed Far Field Patterns from Measured Near Field

Use FFT to Compute Far Field Patterns

Use OSI to Interpolate to Rectangular Grid

Measure Fields in a Bipolar Grid (both magnitude and phase)

Feed Horn

Far field

E-plane

Normalized Patterns (dB)

θ (degrees)

Near field

YRS
6-13-17
Tendeg’s Initial Surface Measurements and Representative Antenna Profile

Reflector surface measurements

Surface profile based on measurements

YRS
6-13-17
Ideal vs. Non-ideal Simulated Reflector Patterns at 35.75 GHz

Directivity and Beamwidth Table

<table>
<thead>
<tr>
<th></th>
<th>CAD model</th>
<th>Ideal Reflector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directivity at boresight</td>
<td>50.06 dB</td>
<td>50.15 dB</td>
</tr>
<tr>
<td>HPBW (E-plane)</td>
<td>0.56°</td>
<td>0.56°</td>
</tr>
<tr>
<td>HPBW (D-plane)</td>
<td>0.56°</td>
<td>0.56°</td>
</tr>
<tr>
<td>HPBW (H-Plane)</td>
<td>0.57°</td>
<td>0.56°</td>
</tr>
</tbody>
</table>

Note: Actual gain, yet to be measured, will be lower than directivity.
Measurement Campaign at JPL Antenna Near Field Range before the End of 2017

- GSE Support Structure
 - Provide gravity offload
 - Simulate RF scattering of typical s/c

- JPL Planar Nearfield Scanner
 - Proven Ka-band test facility
 - AUT is stationary – simplifies gravity offload
 - Indoor measurement – no thermal, wind load or weather issues
 - Compatible with metrology equipment
Ka Band Highly Constrained Deployable Antenna for RaInCube

We are very excited about this project and foresee breakthrough developments in many fronts.

1.0 m antenna in 2.5U!

Presenter:
Yahya Rahmat-Samii
Distinguished Professor
EE Dept. UCLA
Thank you