NASA Instrument Incubator Program (IIP) MISTiC[™] Winds

An Affordable System of Systems Approach for the Observation of Atmospheric Dynamics

NASA ESTO IIP PI: Kevin R. Maschhoff, BAE Systems Science Team:

H. H. Aumann JPL

J. Susskind NASA GSFC

June 13, 2017

MISTiC[™] Winds

- Provides High Spatial/Temporal Resolution
 Temperature and Humidity Soundings of the
 Troposphere
 - Atmospheric State and Motion
 - Improved short term weather forecasting
- Enabled by:
 - LEO Constellation Approach
 - Micro-Sat-Compatible Instrument
 - Low-Cost Micro-Sat Launch

Topics

- Instrument Concept and Mission Concept Summary
- Instrument Physical Concept Update
- Risks Reduction Progress
 - Airborne Hyperspectral Sounding and AMV Winds
 Instrument Demonstration
 - Airborne Instrument Engineering Check-Out Flights on ER2
 - Early Look at Spectra and Context Images
- MISTIC OSSE Highlights
- Next Steps
- IIP Summary

MISTiC[™] Winds- Two Affordable Measurement Concepts to Reduce Weather Forecasting Errors

- MISTiC[™] Winds Temperature and Humidity Sounding Constellation Options.
 - 1. Frequent-Sounding Constellation
 - e.g. 90 min refresh-globally.
 - 2. Wind-Vector Formations
 - e.g. 4 3-Satellite Formations for Cloud-Drift and Water Vapor Motion-Vector Winds
 - Provide 3-Hr Refresh for 3D Winds and Atmospheric Soundings (T, H₂O)

Miniature Spectrometers Operated in Constellations Offer Lower Cost /Lower Risk Approach than GEO for Frequent-Refresh IR Soundings & 3-D Winds

90 min Refresh of IR Soundings Provided by Spectrometers in 8 Orbital Planes (gold)

BAE SYSTEMS

MISTiC Winds Constellation Provides Frequent Global Temperature, Moisture, and Wind Profiles

12 Nano-Satellites in 4 groups of 3 Observe both Wind and **Vertical Profile Every 3 Hours**

Each Wind Vector is Derived from[®] Three Views of the Atmosphere

Earth Inertial Axes X Real Time Multiplier: 16.00 9 Oct 2014 16:15:00.256

LEO orbit and SWIR/MWIR-only Spectra Enables MISTiC[™] Instrument SWaP Reduction of 1-2 Orders of Magnitude

- Size Drivers
 - Geo-Stationary Imagers /Sounders Driven by Orbit Radius
 - IR Sounders Driven by # of Channels and LWIR Band Cooling
- Moving MISTiC[™] to a LEO orbit and eliminating LWIR channels enables massive reduction in SWaP
 - Current concept is 60-125X less volume than Sounders proposed for GOES-R
 - Reduce power demand with an advanced FPA technology that won't require as much cooling
- IIP Instrument Concept Design
- Baseline envelope consistent with hosting on a 50 kg ESPA-Class Microsatellite
 - "Objective" Envelope consistent with 27U Cube sat Envelope (about 1 cubic foot of spacecraft volume)
- Small instrument size depicted continues to be feasible as instrument concept fidelity increases

Artist's Rendering Depicts a MISTiC™ Instrument, for Comparison to AIRS

BAE SYSTEMS

Achieve Reduced SWaP by Reducing Number of Spectral Channels to the Mid IR only-Sufficient to Sound the Dynamic Portion of the Atmosphere

- SWIR Coverage at NEΔT and Δv Sufficient for CO₂ R-Branch Temperature Sounding of Surface to Upper Troposphere
 - Sharper Vertical Resolution
 using Line Wings
 - Spectral Resolution > 700:1 is Sufficient
- Mid-Trop. CO
- Mid-Trop. N₂O
- Moisture in Planetary Boundary Layer
- Moisture Profile in Lower and Middle Troposphere
 - WV Motion Vector Winds
- Clouds
 - Cloud MV Winds

Channels Below 1750 cm⁻¹ Needed to Observ in for Upper Troposphere—but, UT is Observ Sufficient Frequency by CrIS/IAS திழி ATMS

MISTiC[™] Winds Level 1 Instrument Performance BAE SYSTEMS Characteristics and Level-2 Sounding Data Quality (updated)

MISTiC [™] Key Instrument Performance					
Characteristics					
Characteristic	Value	Comments			
Minimum Spectral Frequency	1750 cm ⁻¹	5.72 μm			
Maximum Spectral Frequency	2450 cm ⁻¹	4.082 μm			
Spectral Sampling	~ 2:1	<590 spectral samples			
Spectral Resolution @ minimum	>700 :1	$\nu/\delta\nu$ ((comparable to CrIS- Apodized)			
Spectral Calibration Knowledge	1/100,000	δλ/λ			
Angular Sampling	1.6 mr (cross- dispersed)	1.38 km (@ Nadir)			
Orbital Altitude and Orbit	705.3 km	Polar/Sun-Synchronous			
Angular Range (cross-track)	1570 radians	90 Degrees—Same as AIRS			
Spatial Resolution	<3.0 km (geometric mean)	@ Nadir			
Radiometric Sensitivity	<200 mK (max)	(<150 mK @ 2380 cm ⁻¹)			
Radiometric Accuracy	<1%	@ 300K Scene Background			
Key Sounding Data Product Characteristics,					
Vertical Resolution— Temperature	~ 1 km	In Lower Troposphere			
Layer Accuracy	~ 1.25 K	In Lower Troposphere			
Vertical Resolution—Humidity	~ 2 km	In Lower Troposphere			
Layer Accuracy—Humidity	~ 15 %	In Lower Troposphere			

- MISTiC[™] Data Quality Requirements Similar to those Demonstra-ed by NASA's Successful AIRS Instrument
 - Spectral Resolution
 - Spectral Calibration
 Stability
 - Radiometric Sensitivity/Accuracy
- Spatial Resolution Notably Finer than AIRS Resolution (13 km @Nadir for AIRS)
 3.0km @ Nadir
- Reduced Spectral Range Enables Major SWAP Reduction

Primary Efforts under NASA IIP Address Instrument **BAE SYSTEMS** Concept, Technology and Measurement Challenges (Continued)

- ✓ Space Mission concept development
- ✓ <u>Technology Risk Reduction</u>

Challenge: Get a higher operating temperature FPA in order to reduce cooler power

- Benefit: Large reduction in SWAP
- Approach: Use of new APD-Class MWIR FPA
 - <u>Risk</u>: APD Array Not Yet Tested in Space Radiation Environment
 - Mitigation: Radiation Testing on IIP (by 9/15)

Observation Method Risk Reduction

- Challenge: Application to Highly Vertically Resolved (3D) MV Winds is highly plausible-but not demonstrated
 - <u>Benefit</u>: MV Winds at Low Cost -> Better weather forecasting
 - <u>Risk</u>: Tracer De-correlation Behavior at finer vertical resolution unknown in detail
 - <u>Mitigation</u>: Airborne observations of Tracer De-Correlation Times & Behavior

The MWIR HgCdTe Avalanche Photodiodebased IR Focal Plane Array Detector selected for MISTiC allows highsensitivity hyperspectral measurements at 85K

MISTIC[™] Winds Tracers Features Would Have Better Vertical Resolution Than MODIS Winds

Airborne Testing of MISTiC Spectrometer on the **BAE SYSTEMS** NASA ER2 Platform Reduces Observing Method Risks

Airborne Spectrometer Very Similar to Space Instrument--with these differences:

- Off-the shelf APD FPA, Filter ($\lambda_{co} \sim 5.4 \mu m vs 6$)
- Active Cooling of Spectrometer- (in Vacuum Vessel)
- POD Window (outside cal. loop)
- (rugged) COTS electronics, coolers, etc

MISTiC and Independent Observations

IR Imaging/Sounding Spectroscopy

NWS

Vandenberg AFB

Multi-Pass Orbits

Simulating MISTIC AMV

GN 120°KH

Constellation

RAWINSOND

- Visible Context Images
- NWS RAWINSONDEs
- METSAT Obs (IASI, AIRS, GOES)

For Airborne Test, Atmospheric Motion Vector From **BAE SYSTEMS** Tracking Features in Multiple Views of Scene with $\Delta t \sim 30$ min

ER2 Latitude, Latitude

2017-05-15 T18:34:40.003 34.41757 -120.493

iwg1 Time

Example Visible-Band Cloud Motion-Vector Wind Observation Just South of Vandenberg AFB

Sweep 70 Order 2 Nadir Line Image and **BAE SYSTEMS** FOV-Average Spectrum South of Vandenberg AFB

- 4.7-5.4 µmSpectral Image for one IFOV (above) and Average Spectrum for the IFOV (below), (vert axis proportional to digital counts)
- Darker lines correspond to low / brightness, in regions where the dominant emission is from -high in the troposphere.
 - Brighter vertical lines show spatial contrast, corresponding to spatial variation near surface.
 - Darker regions show more uniform moisture emission from colder regions at higher altitude
- Average Spectrum Appear Reasonable, relative to other WV-region spectra brightest near 5 microns (~ ch 70), and dimmer at higher wavelengths

ECO-1 Sweep 137 Order 3 Nadir Line Image and FOV-Average Spectrum

- 4.06-4.7 μmSpectral Image for one IFOV (above) and Average Spectrum for the IFOV (below), vert axis proportional to digital counts out of the A/D
- Order 3 IFOV-Average Spectrum Appear Reasonable—showing expected CO₂ Emission Spectral Features
- Bright emission from surface on far left, sharp edge due to R-Branch, and structured P-Branch on Right Side

BAE SYSTEMS

Photos following MISTiC Winds Airborne **BAE SYSTEMS** Instrument ECO-1 Flight

- Top: NASA ER-2 Pilot (Nelson) Describing Scene Conditions During Flight and (good) Instrument Operation/Behavior to the instrument team
- Bottom: Instrument in Super-pod following ECO-1 flight, with some of BAE/UML team
 - Spectrometer/Optics Suspended Below Main Support Plate
 - Electronics Attached Upper Side of Support Plate
 - Primary Window Attached/Sealed to Super-pod
 - Univ. of Mass.-Lowell Grad.
 Student (now staff member)
 Sam Fingerman (center)
 Developed instrument control software

BAE SYSTEMS

GMAO OSSE System (Used for MISTiC Winds OSSE)

- OSSE Performed by NASA GSFC GMAO
 - Team led by Dr Will McCarty
 - (BAE provided descriptions of MISTiC Winds Observing Approach)
- OSSE Top-Level Attributes
 - Nature Run is the 7-km GEOS-5 Nature Run
 - 3DVAR Data Assimilation System, on 6-Hour Cycle
 - Approach to Wind Observations Simulation:
 - Based on likelyhood of moisture and cloud AMV Observation Conditions in G5NR

Zonal Wind Analysis Variance for Control and 4-Orbital Plane MISTiC Winds Constellation

Strongest Forecast Improvement Impact Seen in Upper Troposphere, Especially in Tropics-Where Current Forecast Errors are Largest

Forecast Impact (FSOI Metric)

Considering perfect observations, MISTiC has the potential for reducing 24 hr forecast error

- When realistic errors (approximated from convolved IASI data) are applied, the radiance impact is reduced greatly
- Additional results indicate that further development is needed to fully exploit the information content from MISTIC Radiances

Development of Appropriate Error Estimates is Work-in-Progress (4ERR is for "Himawari Errors"

Contributions include Observing Error, Forecast Error, ...

Even with Current Weather Model Spatial Scales & Refresh Rates, OSSE Shows that MISTiC Winds has Significant Weather Forecast Improvement Potential

Broader Objective and Next Steps:

- Objective: Affordable Means to Improve Short-Term Weather Forecasts
 - Societal Benefits Include:
 - Airlines and Air Traffic Control-- having greater knowledge of weather 3 hours out to reduce flight delays
 - Improved Power Grid Load Forecasts (and more)
- Next Steps to Operational System
 - NASA IIP continues to mitigates risks
 - Spectral Sounding and AMV Feature-Tracking Demonstration
 - Airborne Instrument Integrated,
 - Infrared Imaging/Sounding Functions Demonstrated
 - Instrument Repairs to enable HSI AMV's initiated
 - ER2 Hosted Science Flights Planned for Fall 2017
 - OSSE Modeling to Evaluate Impact on Numerical Weather Prediction
 - IR Hyperspectral AMV OSSE Demonstrates Significant Impact
 - MISTiC Winds Formation (Wind Triplet) Demonstration in Space

Miniature Spectrometers Operated in LEO Constellations Offer Affordable/Lower Risk Approach for Improved Short Term/Fine Scale Weather Forecasting

MISTiC[™] Winds-A Miniature High Vertical Resolution Infrared Sounder for 3D Winds and Frequent IR Soundings

- Miniature Spectrometers Enabled by:
 - Optimized Low-Impact Spectral Channel Selection Proven through a Decade of NASA's AIRS Experience
 - Innovative Opto-Mechanical/Thermal Design Minimizes S/C Resources Needed to Cool IR Spectrometer
 - Advanced Large-Format IRFPA, Miniature Cryocooler, and Electronics
 - All Technologies TRL-5 or Higher
- Compact IR Sounder Design, Mature Algorithms and Technologies Enable:
 - Payload Hosting on a Micro-Satellite for a Low-Cost Total IR Sounding Mission
 - ~1 km Vertical & ~3 km Horizontal Resolution (@Nadir) in the Troposphere
 - Temperature, Moisture, Wind Profile

Supplemental Material

MISTIC Winds: Midwave Infrared Sounding of Temperature and humidity in a Constellation for Winds

PI: Kevin R. Maschhoff, BAE Systems

Advance the readiness of a miniature, high resolution, wide field, thermal emission imaging spectrometer to measure vertically resolved tropospheric profiles of temperature and humidity for deriving global 3-D wind measurements.

- Provide ~ 2-3 km spatial resolution temperature and humidity soundings of the troposphere using an AIRS-like (Atmospheric Infra-red Sounding) method.
- Enable a LEO constellation approach that provides 3-D Wind field measurements and atmospheric state and transport observations at low system cost.
- Reduce technology risks with the Infrared Focal Plane Array (IRFPA) and spectrometer technologies critical for significant instrument size, weight and power reduction (20 x 30 x 30 cm, 15 kg, 50 W).

- Optimize and refine space-based measurement approach based on experience with AIRS, AIRS-Light and small satellite provider experiences.
- Demonstrate calibration stability of miniature MWIR spectrometer (4.08 5.8 um) in ground testing.
- Demonstrate robustness of spectrometer by performing space level thermal fluctuation testing and vibration testing to launch levels.
- Verify instrument measurement capability of 3-D cloud-drift and water vapor motion vector winds on high altitude balloon or high-altitude fixed-wing platform.
- Demonstrate IRFPA space radiation tolerance (> 25 krad).

 Instrument science and payload requirements review 10/14 Instrument science and payload concept review 12/14 06/15 Airborne demonstration plan review Detector/ROIC radiation test/analysis complete 09/15 Calibration stability test complete 07/16 · Airborne instrument design/build complete 10/16 Airborne demonstration complete 2/17 · Airborne demonstration data analysis complete 4/17

TRL_{in} = 4 TRL_{current} = 5

BAE SYSTEMS

GOES-R Advanced Baseline Imager, AIRS, and CrIS

- Size of Geo-Stationary Imagers/Sound ers Driven by Orbit Radius
- Size of IR Sounders Driven by # of Channels and LWIR Band Cooling

MISTIC[™] Winds Instrument Radiometric Sensitivity Performance Estimates Show Solid Margin Against Requirements

- Spectrometer Radiometric Modeling Methods Developed for AIRS, GOES-R HES, etc used to Estimate MISTiC[™] Winds Instrument Sensitivity
- Sensitivity Similar to AIRS (<200 mK @ 250K Scene) for low brightness temperature regions near 4.2 μm
- Updated APD detector noise modeling still be included in system model
 - APD FPA Vendor-modeled dark current and noise are in acceptable range for MISTiC[™] at 90K

BAE SYSTEMS

MISTiC Winds Observes the 3D Vector Wind Profile

- MISTiC Winds Observes 3D Atmosphere at 3 closely spaced times to Produce Multi-Altitude Motion-Vector Winds
 - Projected Wind Speed Error ~ 2 m/s rms
 - ~3x better than projected for GOES-R
 - SWIR/MWIR Imaging/Sounding Provides Much Better Tracer Height Assignment than GOES
 - 1K/1 km Temperature Sounding Enables Separation of Temperature and Moisture Concentration Contributions to Radiance
 - Both Moisture and Cloud Motion Vector Winds Observed by MISTiC
- OSSE's Show that 3D-Winds Observations Would Have the Largest Impact on Short Term Weather Forecast of Any New Observation
 - MISTiC Observes Thermodynamic State and Mass-Field Motion

MISTIC Winds' Tracers Features Would Have Better Vertical Resolution Than MODIS Winds (shown) and GOES Imagers MISTiC[™] Winds' Concept Based on Proven Science From Current Flight Instruments

- MISTiC[™] Winds' Vertical Temperature Profile Retrieval Comparable to AIRS & CrIS in Lower Troposphere
 - Vertical Temperature Profile Retrieval Accuracy for Two Different Quality Control Thresholds Shown
 - Using All AIRS Channels—solid curves
 - Using SWIR/MWIR-Only –dashed curves
- Additional Error experienced is modest using on_, SWIR/MWIR Channels
 - ≤ 0.1K Added Error in Lower Troposphere
 - NOTE-AIRS Version 6 Algorithm Primarily uses /SWIR MWIR Channels for Sounding, using LWIR Channels only for Cloud-Clearing
- Fine spatial resolution (~ 3 km @ nadir)a new benefit
 - Yield of Cloud-Clear Observations much higher for MISTiC than for CrIS, IASI, and AIRS
 - Increased Cloud Contrast in Partly Cloudy Scenes

BAE SYSTEMS

(from Joel Susskind NASA GSFC)

MISTiC[™] Winds Retrieval Simulation Validates Chosen Spectral Range

BAE SYSTEMS

Truth = AIRS Retrievals version 6 - Ocean 50°N to 50°S December 4, 2013

MISTIC[™] Winds Instrument Radiometric Sensitivity Performance Estimates Show Solid Margin Against Requirements

- Spectrometer Radiometric Modeling Methods Developed for AIRS, GOES-R HES, etc used to Estimate MISTiC[™] Winds Instrument Sensitivity
- Sensitivity Similar to AIRS (<200 mK @ 250K Scene) for low brightness temperature regions near 4.2 μm
- Updated APD detector noise modeling still be included in system model
 - APD FPA Vendor-modeled dark current and noise are in acceptable range for MISTiC[™] at 90K

BAE SYSTEMS

Spectrometer Temp. Variation in Worst-Case Orbit is Small

→MISTiC Meets Stringent IR Sounder Spectral Calibration Stability Requirements Within Envelope/Mass Limits of a Small Micro-Satellite

DRS 1093 ROIC – APD-Mode Focal Plane Array

- 640 x 480 Array of APDs
- 25µm Pixel Pitch
- Frame rate 30Hz
- Master clock 12MHz.
- 77K Nominal Operating Temperature
 - Space Instrument Operating Temp 90K
 - Airborne Demo Temp 60K
- Active Power 200 mW
- 46 bond pads, 32 are to be bonded
 - 4 detector
 - 2 video output
 - 7 power
 - 8 ground and substrate
 - 3 external biases (2 tactical)
 - 6 digital inputs (5 tactical)
 - 10 internal bias overrides
 - 1 digital test out
 - 1 analog test out
 - 2 temp pads (4 temp wires)
 - 2 test diodes (not included in pad count)

BAE SYSTEMS

APD IRFPA Demonstrated in Operational (Airborne) Hyperspectral Imaging Applications

Ionizing Radiation Tests of HgCdTe APD FPA Completed

Ionizing Radiation Test Background:

- Test Performed by AFRL Infrared Radiation Effects Laboratory
- Test Type: Total Dose-Proton
 - 68 MeV Proton Energy
 - FPA Cooled/Under Operating Bias Voltages During Proton Irradiation
- FPA Radiometric Characterization Pre-Radiation and at 6 Dose Steps

Key Test Results:

- ROIC Essentially Unchanged to 70 krad
- Detector dark current (and noise) increase with dose, but acceptable rate
 - FPA Noise < Requirement at 20 krads Proton Dose\
 - Modest 1/f noise increase, at high APD gain at higher proton doses

Total Ionizing Dose (krad(Si)	Median Pixel Dark Current (A) (zero bias reference)	Allocated Dark
Pre-Rad	1.3x 10 ⁻¹⁵	Current Ramt.
1	1.26x 10 ⁻¹⁵	< 5 fA/Pix
5	1.82x 10 ⁻¹⁵	
15	3.5x 10 ⁻¹⁵	<u>ج</u> ا
25	6.3x 10 ⁻¹⁵	
35	8.0x 10 ⁻¹⁵	
70	16.0x 10 ⁻¹⁵	

HgCdTe 640x480-Format APD-Mode IR FPA Technology Readiness Level Advanced to 5

Key MISTiC 3D Winds System (of Systems) -Level Performance Requirements (draft)

KPP	KPP Attribute	Requirement
3D Motion Vector Winds	Layer Wind Speed Uncertainty	< 2 m/s rms
	Layer Wind Direction Uncertainty (above 10 m/s)	< 10 degrees rms
(Moisture and Cloud Motion Vectors)	Layer Height Pressure Height Assignment Error	<30 mB
	Layer Effective Vertical Thickness	<100 mB
	Minimum Pressure of Highest Pressure-Level	<350 mB (MMV) <500 mB (CMMV)
	Tracer Potential Density (Cloud-Free Conditions for MMV, Cloud Contrast for CMV)	>1 per 6 km sq per vertical layer :
Temperature Vertical Profile	Layer Effective Vertical Thickness	>100 mB (~ 1 km)
	Layer Temperature Accuracy	>1 K
	Sounding Measurement Potential Density	> 1 per 6 km sq
ObsFrequency	Observation Refresh Period	<3 hours (4 planes)

MISTiC Winds Observes both Total Wind Velocity Vector and the (via IR Sounding) the Geostrophic/Gradient Wind Vector Component in \geq 6 Layers