

#### The OAWL instrument: a direct-detection aerosol wind lidar for airborne and space-based wind profiles



J. Marquardt, S. Tucker, C. Weimer, M. Hardesty, S. Baidar

13 June 2017

## Outline



- Brief OAWL introduction
- HAWC-OAWL IIP overview
  - Athermal Interferometer
  - Reconfiguration for DC-8 aircraft
- Update on GrOAWL Venture Tech
  - Gulf of Mexico flights 2016
- Conclusion



### Winds and weather affect us all – locally, globally, & economically.

Severe Weather

**Jet Stream** 



Wind Shear & Turbulence: Efficiency and Safety

Aerosol/Pollution Transport = Chemical Weather



Surface Wind Conditions

#### **Optical Autocovariance Wind Lidar (OAWL)**

Ball

- Direct detection wind lidar system
- Field-widened, Mach-Zehnder
  Interferometer reciever (MZI): (Patent #s: US7929215B1, US8077294B1)
- Four detector channels sample interferometer fringe phase (wind) and amplitude (aerosol).
  - --- Outgoing "T0" pulses
  - --- Atmospheric Returns at range
- T0 phase offset used to adjust detector returns for every pulse - prior to accumulation/phase fit:
  - no laser pulse-to-pulse stability requirements
- After accumulation, the shifted detector values are fit to determine the return phase, Δφ, related to the line-of-sight wind speed, V<sub>LOS</sub> by

$$V_{LOS} = \frac{\Delta\phi\lambda c}{2\pi(2OPD)}$$

4



# **The Evolution of OAWL**

Ball designed, built and tested OAWL systems, mission concepts, and retrieval/ processing algorithms on multiple airborne campaigns with ESTO funding



#### 2008-2012: OAWL IIP-07

- ✓ Breadboard system
- $\checkmark$  355 nm only, 4x channels
- ✓ Single look 12" telescope
- ✓ Ground validation with NOAA Coherent system
- ✓ Autonomous flight tests on NASA WB-57

#### 2012-2015: HOAWL ACT

Ē

Altitude I

- ✓ Breadboard System
- Demonstrate 532 nm wavelength channels & depolarization channels

winds

Airborne OAWL

- ✓ Total 10 channels
- ✓ HSRL Aerosol retrieval algorithms

#### 2015-2017: ATHENA-OAWL Venture-Tech: GrOAWL

- ✓ Airborne demonstrator System (WB-57)
- $\checkmark$  2-lasers = 400 Hz eff. PRF
- ✓ 4x 532 nm channels
- ✓ 2 looks, 2 telescopes to demonstrate geometry

#### 2014-2017: HAWC-OAWL IIP

- ✓ Two look airborne system (build on GrOAWL)
- $\checkmark$  Dual Wavelength + depol. **Channels**
- Athermal interferometer
- DC-8 hardware design and build







# HAWC-OAWL IIP

### **HAWC-OAWL IIP-13 Objectives**



- Perform aircraft trade studies for new OAWL build for next set of airborne tests
- Build a robust airborne and aircraft qualified OAWL system
  - Design for down-selected DC-8
  - Update detectors, electronics
  - Add DC-8 hardware and thermal control (focus on modularity)
- Build and test new "athermal" interferometer
  - Better performance over a larger temperature and vibration range
- Integrate new interferometer with the DC-8 system build
- Ensure design is compatible with path to space





### **HAWC-OAWL** Layout



# **Athermal Interferometer**



## **Athermal Interferometer**

Ball

- Field-widened, Mach-Zehnder Interferometer
- Optical path difference (OPD) of 0.9 m
- Designed for reduced dependencies on thermal and vibe on spacecraft and aircraft
- Structural-thermal modelling used to verify athermal design will ensure interferometer alignments for ISS environment
- High quality optical surfaces and coatings required





#### **Interferometer: Aircraft vs. Space**

- Important to remember that requirements for interferometer are different for aircraft and space
- HAWC-OAWL is tackling the aircraft requirements
- Many requirements are easier for space



Launch vibe is off scale

10-4

| Environment | Aircraft                                                                          | Space                                                                        |
|-------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Thermal     | Large 10?+C gradients over flight                                                 | ~1? variation on orbit (per CALIPSO)                                         |
| Vibration   | Operational vibe is high, isolation used.                                         | Operational vibe <i>very</i> low, isolation may still be applied if desired. |
| Shock       | Peak takeoff and landing shock can be several g's                                 | Significant launch shock (e.g. 9g from CALIPSO)                              |
| Radiation   | Not a concern for optics. Aircraft EMF concerns addressed through best practices. | Detectors will be shielded. Fused silica optics present a low risk           |



### **Interferometer Status**



- Vendors have fabricated the mirrors and beamsplitters with very good results
- Successful assembly of both the short and the long arm of the interferometer to desired specs
- Currently integrating both arms into full interferometer
- Final assembly and test in the coming weeks



![](_page_11_Picture_7.jpeg)

![](_page_12_Picture_0.jpeg)

# **DC-8 OAWL Reconfiguration**

![](_page_12_Figure_2.jpeg)

![](_page_13_Picture_0.jpeg)

# **Mechanical Redesign for DC-8**

- New optical bench to point beams through single window
- Most on-bench components are being reused, with upgrades to the telescope mount assemblies.
- Structural analysis with mechanical design to assure pointing stability

![](_page_13_Picture_5.jpeg)

- Vibration isolation combine with improved stiffness of T Rx path components
- New base to provide additional stiffness

![](_page_13_Picture_8.jpeg)

![](_page_13_Picture_9.jpeg)

![](_page_14_Figure_0.jpeg)

#### System will be ready for DC-8 integration at end of IIP

![](_page_15_Picture_0.jpeg)

# **GROAWL-AOVT UPDATE**

#### **GrOAWL: Optical Autocovariance Wind Lidar**

![](_page_16_Picture_1.jpeg)

- Earth Venture Instrument 2 (EVI-2) Proposal to NASA in 2013
  - <u>Not</u> selected for space mission Category 3
  - Was selected for Earth Venture Risk Reduction Funding ("Venture Tech") to advance its Technology Readiness
- Focused Science Mission and path to space
  - Tropospheric dual line of sight winds plus aerosols
- Two lasers both operate at the 532 nm (green) wavelength and 355 nm (UV) wavelength.
- Autonomous operation with real-time winds processing
- Flight testing on WB-57

| Parameter                | Value (look1/<br>look2)  |
|--------------------------|--------------------------|
| Pulse Energy 532 nm      | 200 <b>?</b> J – 2.5+ mJ |
| Pulse Energy 355 nm      | 0.5 mJ – 11 mJ           |
| Laser Pulse Repetition   | 200 Hz per look          |
| Telescopes eff. Diameter | ~27 cm diameter          |
| Detector Channels        | Up to 10                 |
| Sample Rate              | 140 MHz (1.07 m)         |
| Interferometer OPD       | ~0.9 meters              |

![](_page_16_Picture_11.jpeg)

## **WB-57 Aircraft Flights**

- WB-57 pallet: pressurized to 5 psi above ambient exterior above 8000 ft
- Two custom pallet floor panels with windows
- GrOAWL instrument, vibration isolation, & environmental control
- Flights above the Gulf of Mexico in early summer 2016

![](_page_17_Picture_5.jpeg)

![](_page_17_Picture_6.jpeg)

# **Key GrOAWL Instrument Features**

![](_page_18_Figure_1.jpeg)

#### Airborne mapping of winds over the Gulf

![](_page_19_Figure_1.jpeg)

#### **GrOAWL** and YES High Definition Sounding System (HDSS, ONR) dropsonde profiles

June 17, 2016

![](_page_20_Figure_2.jpeg)

() JES

#### Excellent agreement with dropsonde data

# **Summary**

![](_page_21_Picture_1.jpeg)

- HAWC-OAWL IIP finishing hardware build and testing during summer 2017
  - Interferometer arm primary mirrors have been aligned to required WFE
  - New optical bench for DC-8 designed and being implemented
- HAWC will be ready for DC-8 integration by Fall 2017
  - Available for future flight tests
- GrOAWL (AOVT) successfully flew numerous tests in May/June 2016
  - GrOAWL data analysis has shown excellent results from WB-57 flights in 2016
  - Completing validation testing -> being performed in conjunction with NCAR at both Boulder facilities
  - Successfully increased TRL for ATHENA-OAWL

### Thank you to...

![](_page_22_Picture_1.jpeg)

- ESTO funding for HAWC (NNX14AF58G) and management of GrOAWL (NNX15AE57G)
- Rest of the OAWL team
  - R. Narciso, J. Applegate, S. Ashby, D. Lloyd, B. Warden,
    N. Siegel, D. Maes, Fibertek, NCAR team, and many more...