MACHINE LEARNING AUGMENTATION & DATA FUSION USING CM-SCALE FLUID LENSING FOR ENHANCED CORAL REEF ASSESSMENT

EARTH SCIENCE TECHNOLOGY FORUM 2017 DR. ALAN LI & DR. VED CHIRAYATH LAB FOR ADVANCED SENSING NASA AMES RESEARCH CENTER

Modern Global Oxygen Production

Value

- Shoreline protection
- Economic value
- Highest biodiversity
- Medical applications

Pressures

- Climate Change
- Ocean Acidification
- Pollution, run-off
- Human Impact

MiDAR UAV

Effective Spatial Resolution [m]

1cm

10cm

OS NOVEL INSTRUMENT TECHNOLOGIES

JASA AME

FOR ADVAN

Science

Physical oceano understand sh coastal enviror transport, flow storm surg

Biological oceane determine health and coverage of life

e	Remote Sensing Measurements	Technologies
ography, hallow onment, w and rge	Bathymetry, sea surface temperature, salinity	FluidCar
nography, h, extent f marine	High-resolution, multispectral image of underwater environment	

2D Fluid Lensing Results, Coral Image Test Target, Test Platforms 11, Depth = 4.5m, MSL

No Fluid

Flat Fluid

Raw Distorted Frames

Mean Image (600 frames)

2D Fluid Lensing Results

2D Fluid Lensing Integration (90 frames)

Original sensor 2013

compute capability.

FluidCam 1&2 offer more than a 10x improvement over previous Fluid Lensing instruments in resolution, data bandwidth, spectral range, SNR, and onboard

NA G

Target

MiDAR Transmitter -LED Array

MiDAR Receiver -FluidCam NIR

N-channel, narrowband structured illumination, $\varphi_{e,\lambda}(\mathbf{P},\mathbf{t})$ and embedded data stream at bN/τ bits/s

MIDAR REMOTE SENSING

Color FluidCam Image

NIR FluidCam with MiDAR

Color-mapped UV Image

Color-mapped NIR Image

MACHINE LEARNING WITH FLUIDCAM & MIDAR

Best Satellite Image Fluid Lensing on UAV FL + SFM Depth

Manual ID

Sand/Other

Branching

Mounding

Rock

8% total

error in

Morphology

ID

Automated Morphology ID

Automated Percent Cover ID

Living

Structure

Nonliving

Structure

error in

Percent

Cover ID vs

30% in

literature

Is there a method to autonomously relate these feature spaces?

Goal: To use high resolution data from UAVs augment low resolution datasets captured by higher altitude and satellite platforms.

- Idea: source which gives the best representation of the feature space

Leverage airborne data, which offers high resolution imagery of reef systems close to the

Concept: Train UAV dataset against the reference dataset using supervised machine learning. Take this classification criteria and apply it to a transformed version of the satellite dataset.

Image Rectification

- Align images and resolutions:
 - Scale Invariant Feature Transform (SIFT)
 - Random Sample Consensus (RANSAC)
- Finds the optimal homography transform

Reference Data

Augmented Machine Learning Training SVM Classification Result PCA + SVM

PCA \mathbf{p}_1' $\mathbf{x}_{PCA} = \begin{bmatrix} \mathbf{p}_2^T \\ (\mathbf{x}_{\lambda} - \mathbf{x}_{\lambda,\mu}) \end{bmatrix}$ $[\mathbf{p}_n^T]$

 \mathbf{X}_{PCA} -Data point in PCA space

*i*th principal unit vector \mathbf{p}_i^{\prime}

 \mathbf{X}_{λ} -Data point in original space

 $\mathbf{X}_{\lambda,\mu}$ -Mean of \mathbf{x}_{λ}

SVM

- 3rd order polynomial • SVM fit to **X**PCA
- Separation into k classes via oneversus-one classification

Prediction Methodology

Satellite

Augmentation Algorithm:

- 1) **Partition** image into various sections
- 2) **Translate, rotate** and **scale** auxiliary dataset with reference to original SVM solution
 - **Translate**: Determined by mean of classes
 - **Rotate**: Determined by PCA directions
 - Scale: Determined by covariance of classes
- 3) **Predict** upon partitioned image using previous SVM solution
 - **Repeat** over all partitions
 - Overlap areas to build Consensus

S V

Image Partition

Prediction Methodology

Cover **Prediction** Morphology Prediction

- Estimated mean of \mathbf{y}_{λ}

Уλ,μ)

Translate Gradient analysis (2 class)

- Identify regions of • high gradients
- Perform clustering by DBSCAN
- Assign labels on adjacent points in relation to clustered points

Rotate

Rotate by mapping onto PCA vectors

Scaling

Scale by covariance matrix

Results: 2-m scale Imagery

Reference

~66% Accuracy

~69% Accuracy

~71% Accuracy

~50% Accuracy

Branching

Mounding

Sand

Robustness

What if we learn upon an **entirely different region**?

1) Take MAP estimate as reference 2) Learn upon these data 3) Predict on original transect

Coral Cover Prediction Accuracy

Method	0.3 m	0.5 m	2 m
K-Means	67%	71%	66%
SVM	74%	74%	63%
Previous Augmented	84%	79%	71%
Augmented	83%	77%	69%

Morphology Prediction Accuracy

Method	0.3 m	0.5 m	2 m
SVM	59%	61%	38%
Previous Augmented	69%	62%	57%
Augmented	70%	68%	60%

Topics

Missions Galleries

NASA TV

Follow NASA

Laboratory for Advanced Sensing (LAS)

Home

About Us

People

Publications

Media

Contact

Technologies

MiDAR - Active Multispectral Imaging

FluidCam - Fluid Lensing CubeSat

Fluid Lensing - Seeing through Waves

Research

Drones that See through Waves Automated Coral Classification Machine Learning Augmentation

and (2) discrimination by morphology (sand, rock, branching coral, or mounding coral). The method is based upon Principal Component Analysis (PCA) to remap and rescale existing datasets upon a known Support Vector Machine (SVM) solution within analogous principal spaces. This supervised method is able to autonomously compensate for changing water depth and illumination conditions, with errors for coral cover and morphology classification derived from aerial imagery at approximately 16% and 31%, respectively. Classification error for data derived from the highest resolution commercial satellite imagery available (Pleiades-1A) is approximately 21% for coral cover and 38% for morphology. Although classification accuracy is improved across both phases, morphology discrimination suffers more acutely from lower resolution and noise effects. However, the method shows promise for future work where UAVs may observe multispectral or hyperspectral data, further increasing the speed and accuracy of classification and enhancing datasets taken at higher altitudes.

Downloads About

Classification of Coral Cover

NASA Audiences

Q <

Search

CURRENT & FUTURE WORK

Airborne

300 350 400 450 500 550 600 650 700 750 800 850 900 950 100010501100 Wavelength, λ [nm]

Midar-UV

NEMO-NET - NEURAL MULTI-MODAL OBSERVATION & TRAINING NETWORK FOR GLOBAL CORAL REEF ASSESSMENT

Variable Multi-sensor Imagery

Fluid Lensing

MM-Scale Airborne MM-Scale Airborne Fluid Lensing DEM

M-Scale Airborne & Satellite Data

VR & App-based Active Learning & Interactive Training through IUCN, Mission Blue, & Partners

Level 1 Data & Existing Training Data Analysis

Active Learning Training of Coral Cover & Morphology Type

NeMO-Net Ingestion of Multi-Modal Data, Data Fusion, & Training

1cm

10cm

50cm

1m

10m

Automated Percent Cover ID

37%		63%
-----	--	-----

Automated Morphology ID

Automated Reef Morphology ID

Sand/Other 43.0%

Branching 18.0%

FluidCam & MiDAR Fused Machine Learning & Dataset Augmentation + Enhanced classification

Results: 0.3-m scale Imagery

Reference

~67% Accuracy

~69% Accuracy

Sand

Results: 0.5-m scale Imagery

Reference

~71% Accuracy

~78% Accuracy

~79% Accuracy

~61% Accuracy

MM-Scale Airborne MM-Scale Airborne Fluid Lensing

Fluid Lensing DEM

M-Scale Airborne & Satellite Data

VR & App-based Active Learning & Interactive Training through IUCN, Mission Blue, & Partners

Level 1 Data & Existing Training Data Analysis

NeMO-Net Ingestion of Multi-Modal Data, Data Fusion, & Training

NeMO-Net Living Structure & Morphology Classification

Branching Mounding Sand

