National Aeronautics and Space Administration

The Vapor/Ice Profiling Radar (VIPR)

Matt Lebsock¹, Luis Millán¹, Ken Cooper¹, Raquel Monje¹, Jose Siles¹, Andrew Brown²

¹Jet Propulsion Laboratory, California Institute of Technology ²Raytheon

Copyright 2016. California Institute of Technology Government sponsorship acknowledged

www.nasa.gov

What is it?

• Differential Absorption Radar (DAR)

– Microwave analogue of DIAL

• An emerging concept to profile water vapor within the cloudy atmosphere.

Complements existing water vapor observations

One of the critical atmospheric variables that are **not adequately measured** by current or planned system is temperature and **humidity profiles** of adequate vertical resolution **in cloudy areas**.

[Andersson (2014) – Statement of guidance for numerical weather prediction, WMO report.]

Vapor / Ice Profiling Radar **VIPR**

Development supported by NASA ESTO

2013: ACT (Advanced Component Technology) PI: Ken Cooper -Develop a 183 GHz source -Integrate into a transceiver -Entry TRL = 2, Exit TRL = 4

2016: IIP (Instrument Incubator

- **PI: Matt Lebsock**
- -Build airborne VIPR radar
- -Demonstrate and validate

-Entry TRL = 3, Exit TRL = 6

Technology Approach

Frequency Modulated Continuous Wave (FMCW) radar.

- 183 GHz with 10 GHz frequency sweep
- Heritage in high frequency radar development for security applications
- All solid state components are compact
- ~1W transmit power.

Measurement Theory

• Near the 183 GHz absorption line the difference in reflectivity between two frequencies is a linear function of the atmospheric water vapor content.

Filling an Observation Gap

Existing Sounding Techniques	DAR Provides
IR Sounding	 In cloud sounding High resolution (~500 m x 2 km²)
Microwave Sounding	
Radio Occultation	
Limb Sounding	
Differential Absorption Lidar	

Existing Column Integral Techniques	DAR Provides
Microwave imagery	 All surface types All weather conditions High resolution (~2 km²) Improved precision
Near-IR imagery	

Instrument Simulations

Total Column Water Vapor

 DAR can provide CWV over all surfaces and cloud conditions with high accuracy

Penetration Depth

•

Analysis guides frequency selection considerations. Probing high-altitude clouds requires different frequency-pairs than does low-altitude clouds.

DAR Capabilities

DAR water vapor measurements can provide:

In-cloud water vapor profiles

 Resolution possible at cloud scale (~500 m by 2 km)

Continuous column water vapor

- ~2 km horizontal resolution
- All surface types
- All weather conditions

Publications:

Millán (2014) – 10.5194/amt-7-3959-2014 Lebsock (2015) – 10.5194/amt-8-3631-2015 Millán (2016) – 10.5194/amt-9-2633-2016 Cooper (in preparation)

Cross section of simulated retrievals

First VIPR Observations

Science Scenario 1: Convective Mixing

 How efficiently does moist convection transport moisture to the upper troposphere?

Science Scenario 2: Shallow Cloud Cover

Science Scenario 3: Water Vapor Variance

