

An Environment for Systemizing Data Preparation and Machine/ Deep Learning K-S Kuo, A O Oloso, M L Rilee, T L Clune, K Doan, H Lin, X Li

An <u>efficient</u> and <u>cost-effective</u> environment that

- Addresses Big Data challenges;
 Volume, Variety, Velocity, Veracity, Value
- Solution Alleviates scientists from undue datamanagement burdens associated with data analysis;
- Sutomates data preparation to systemize machine/deep learning exercises.

Existing <u>file-centric practice</u> causes

- Massive data download
- Enormous duplication in resource consumption
- Individual analysis algorithm implementation
- Diffusive provenance collection

(Moving data stores to Cloud without changing the file-centric practice only makes it marginally better!)

- While most efforts focus on scaling volume, we believe scaling variety is the key to better value!
- Earth system science requires <u>integrative</u> <u>analyses</u>.
 - Interdisciplinary, collaborative investigations
 - Interoperability in data (i.e. fusion) and processing
- Searth Science data are very heterogeneous!
 - Various geometries and resolutions
 - Good volume scaling can be achieved relatively easily with homogeneous data (or a small variety).
 - Good variety scaling is needed to achieve optimal value for <u>integrative analyses</u>.

- Massive volumes of download.
- Seed to overcome the "file" barrier.
- Second and the sec
- Sparsity of parallelization expertise among scientists.

Why can't we scientists compare geophysical quantities obtained by different means like comparing prices of, say, hard drives online?

- Transition to a <u>data-centric practice</u>
 - Access and analyze data directly on server side.
- Unified data representation
 - Ist step in homogenizing variety
- Regridding/Remapping
 2nd step in homogenizing variety
- Connected component labeling (CCL)

Enable event-based analysis

Moving Object Database (MODB) capabilities

- SciDB a distributed, parallel database management system (DBMS) based on array data model.
 - Our technology of choice.
 - Tight coupling between compute and storage.
 - More efficiently than the loosely coupled approaches (Doan et al 2016, IEEE Big Data).
 - Leveraging both OpenMP and MPI underneath its own API programming model.
 - A suite of statistical functions/operators built-in! (Think: MS Access or Excel on steroid!)
- Spark and Hadoop (MapReduce)
 - Loose coupling between compute and storage.
 - * More elastic than the tightly coupled approaches.

Unified Data Representation

- SpatioTemporal Adaptive-Resolution Encoding, STARE
 - Spatial indexing based on Hierarchical Triangular Mesh
 - Quad tree adaptive resolution achieved with noting the quadfurcation level.
 - Each edge of a spherical triangle is a segment of a great circle; think: fast identification of region membership.
 - Our customized implementation turns spatial set operations into integer interval operations; think: *fast* too!
 - Similar indexing in time, i.e. hierarchical (but no binary tree).
- Facilitates <u>data placement alignment</u>
 - Same spatiotemporal subsets from all datasets (arrays) reside on the same nodes.
 - Analyses requiring spatiotemporal coincidence (which is a lot) remain embarrassingly parallel; think: *fast* again!
- Supports Moving Object Database (MODB) operations
 - E.g. whether an event of phenomenon A runs into an event of phenomenon B and, if so, where and when?
 - (Event identification and tracking was done previously with an implementation of CCL.)

Hierarchical Triangular Mesh - HTM

HTM is a way to index/ address the surface of a sphere using a hierarchy of spherical triangles.

- Start with an inscribing octahedron of a sphere.
- 2. Bisect each edge.
- 3. Bring the bisecting points to inscribe the sphere to form 4 smaller spherical triangles.
- 4. Repeat

HTM Quad-tree

- At quadfurcation depth (level) 23, the linear resolution reaches ~1 meter.
 - Each latitude-longitude coordinate is assigned an HTM index with an uncertainty of ~±0.5 meter.
 - Sufficient to index the great majority of Earth Science remote sensing data.
 - Our customized implementation carries the quadfurcation <u>depth level</u> to denote approximate resolution of the data.
- Applicable to Grid, Swath, and Point data types.
 - In fact, it is applicable to all geospatial data.

NMQ and TRMM

Second Analysis Sec

Range	Starting Bit	Ending Bit	No. Bits	Denoting
0	0	2	3	Resolution
1	3	12	10	millisecond
2	13	24	12	Second
3	25	29	5	Hour
4	30	32	3	Day of week
5	33	34	2	Week
6	35	38	4	Month
7	39	48	10	Year
8	49	58	10	Kilo-annum
9	59	62	4	Mega-annum
10	63	63	1	Before/After

STARE

- SpatioTemporal Adaptive-Resolution Encoding.
 - Implemented in SciDB
 - It can be used independently as an indexing scheme, i.e. standalone (modifications are likely needed for optimization)
- Consistent indexing of all dataset arrays greatly <u>simplifies</u> and <u>speeds up</u> integrative analyses!
 - Flexible subsetting: spatial (including irregular regions of interest, ROIs), temporal, and/or spatiotemporal
 - Conditional subsetting: using query result from one dataset array to subset another dataset array
 - E.g. Wind speed (temperature, pressure etc.) for where there is rain.
 - Efficient geo-spatiotemporal set operations.

- Comparison, a ubiquitous kind of integrative analysis
 - Observations with observations, observations with model output, and model output with model output...
 - Differences in geometry and resolution complicate comparisons.
 - Requires more than spatiotemporal coincidence.
 - If we cannot do comparisons conveniently and efficiently, there is no hope for more sophisticated analyses.
- Two types of regridding implemented
 - Inverse distance weighting (IDW)
 - Flux conservative
 - We have gained the skill to systematically implement other regridding methods in Climate Data Operators, CDO.)

2009 December 3 0300 2009 December 3 0305

These data were obtained by performing a "join" operation based on STARE spatiotemporal indexing in SciDB.

Full resolution data was regridded to a lower resolution for clarity and convenience. Values shown are the actual maximum values within the geographic trixel.

> Temporal ID ~5 minute resolution 1

Corresponding TRMM and NMQ data elements share temporal and spatial indexes.

Level 7 trixels (~78km) are used for clarity. Native STARE resolutions are level 11 for TRMM and level 13 for NMQ.

SciDB Query

To spatiotemporally "join" the two datasets with STARE indexing (5-min at level 7, i.e. ~78-km resolution):

```
join( nmq_precip, trmm1_2B31 ); - Magic!
```

• To subset temporally for visualization:

```
select *
```

into nmq_trmm_09120303

from nmq_trmm1_result - result from previous join

where

```
tIndex= temporalIndexFromString("2009-11-03 03:00:00.000 (00)") or
```

tIndex= temporalIndexFromString("2009-11-03 03:04:16.000 (00)");

- S Joining a week of NMQ and TRMM 2B31 takes <u>less than 1 minute on MAS cluster</u>.
 - NMQ: 2016(=12*24*7) 5-min time slices of 7000×3500 2D floating-point array.
 - TRMM 2B31: <u>110</u> orbit granules of ~9000×49 2D floating-point array (multiple attributes)
- So more painstakingly reading and filtering numerous files from various datasets!
 - Operations can be straightforwardly interfaced with a GUI for <u>Visual Analytics</u>!
- One remaining performance hurdle is visualization data movement!

Level 7:

- ~63 km (area) or
- ~78 km (edge)

TRMM prSurf Level 11 = ~ 4 km (area) or ~ 5 km (edge) TRMM rrSurf

Level 11 = 4 km (area) or ~5 km (edge)

Demo Animation (with NSF EarthCube support)

- Data-centric practice addresses many ills of file-centric practice.
- Volume scaling through parallelization addresses only (less than) half of the problem.
- Variety scaling through indexing/partitioning is the key to achieve better value.
- We implemented CCL in SciDB previously.
- We implemented STARE and regridding in a Big Data technology, SciDB.
- Together they automate data preparation and support <u>event</u>-<u>based</u> analyses.
- It constitutes a foundation for systemizing machine learning.
 - E.g., what is the probability of an event of phenomenon A occurring at the same location in a week given that an event of phenomenon B occurs?

- Some component labeling (CCL) implementation in SciDB as a user defined operator (UDO).
- SpatioTemporal Adaptive-Resolution Encoding, STARE.

THANK YOU!

HTM Resolutions

Depth	Resolution	Edge Length	Depth	Resolution	Edge Length
23	~1 m	~1.2 m	11	~4 km	~5 km
22	~2 m	~2.4 m	10	~8 km	~10 km
21	~4 m	~5 m	9	~16 km	~20 km
20	~8 m	~10 m	8	~31 km	~39 km
19	~15 m	~19 m	7	~63 km	~78 km
18	~31 m	~38 m	6	~125 km	~157 km
17	~61 m	~77 m	5	~251 km	~314 km
16	~122 m	~153 m	4	~501 km	~628 km
15	~245 m	~307 m	3	~1003 km	~1,256 km
14	~490 m	~615 m	2	~2005 km	~2,500 km
13	~1 km	~1.2 km	1	~4011 km	~5,000 km
12	~2 km	~2.5 km	0	~8021 km	~10,000 km

