

Knowledge Base for Distributed Spacecraft Mission Design Using the Trade-space Analysis Tool for Constellations (TAT-C)

Paul T. Grogan¹, Philip Dabney², Olivier de Weck³, Veronica Foreman³, Sigfried Hache¹, Matthew Holland², Steven Hughes², Jacqueline Le Moigne², Sreeja Nag^{2,4}, Afreen Siddiqi³

AIST-14-0053 – ESTF 2017 – June 13, 2017

- 1. Stevens Institute of Technology, Hoboken NJ
- 2. Goddard Space Flight Center, Greenbelt MD
- 3. Massachusetts Institute of Technology, Cambridge MA
- 4. Bay Area Environmental Research Institute, Petaluma CA

NASA Earth Science Challenges

Landsat 8 (Source)

Traditional EO Mission:

- Monolithic platform
- Direct value from collected data:
 - Operational Land Imager
 - Thermal Infrared Sensor

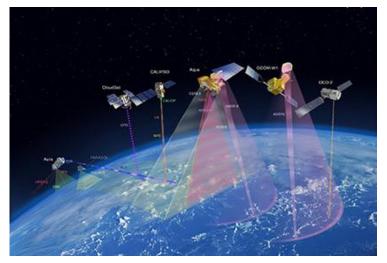
Afternoon Constellation (Source)

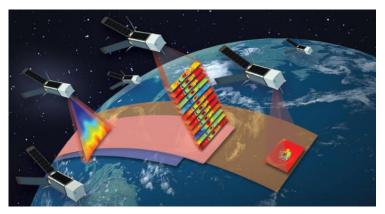
Novel EO "Mission":

- Coordinated platform
- Emergent value from correlated data
 - 10+ instruments
 - Spatial/temporal correlation

TROPICS (Source)

Future EO Mission:


- Distributed platform
- Emergent value from composed data
 - Control member spacecraft

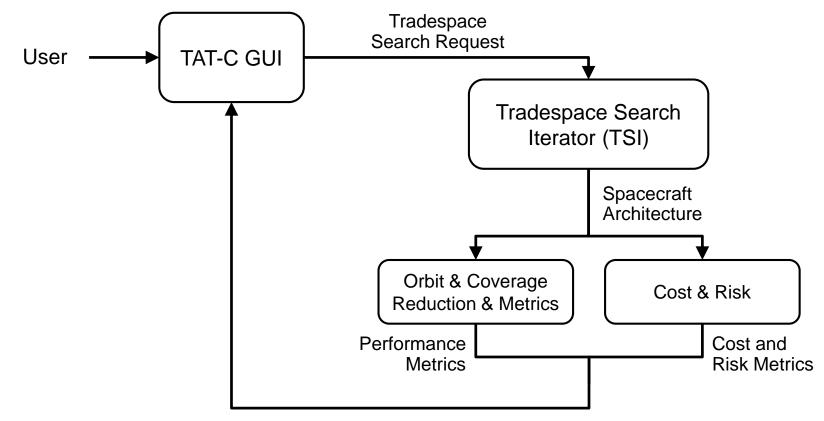


Distributed Spacecraft Missions (DSM)

- DSMs leverage multiple spacecraft to achieve one or more common goals
- Potential benefits:
 - Multiple measurements in spatial, spectral, temporal, and angular dimensions
 - Mission flexibility & robustness
 - Cost effectiveness
- Potential risks:
 - New technology & operations
 - Emergent system performance
 - "Robust-yet-fragile" behaviors

Afternoon Constellation (Source)

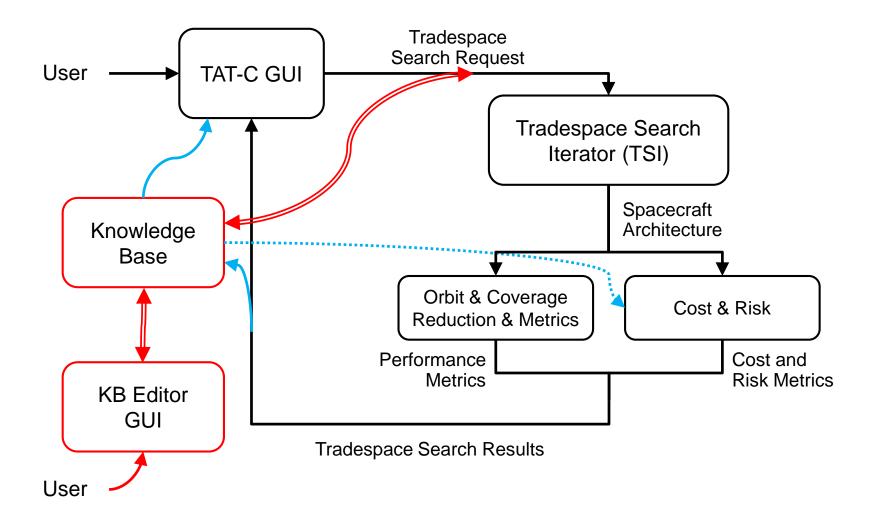
TROPICS Mission Concept (Source)



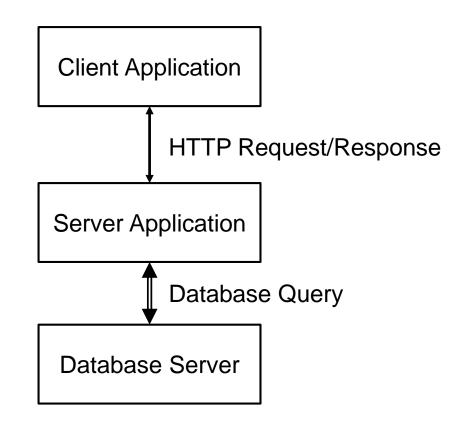
- Assess anticipated performance, costs, and risks of alternative DSM concepts in pre-Phase A analysis
 - Tradespace Analysis Tool for Constellations (TAT-C)
 - Combinatorial DSM tradespaces are cognitively and computationally difficult to search effectively
- Represent and ultimately reason on accumulated knowledge from tradespace analyses
 - Knowledge Base for TAT-C
 - How can knowledge base services augment DSM tradespace search activities in TAT-C?

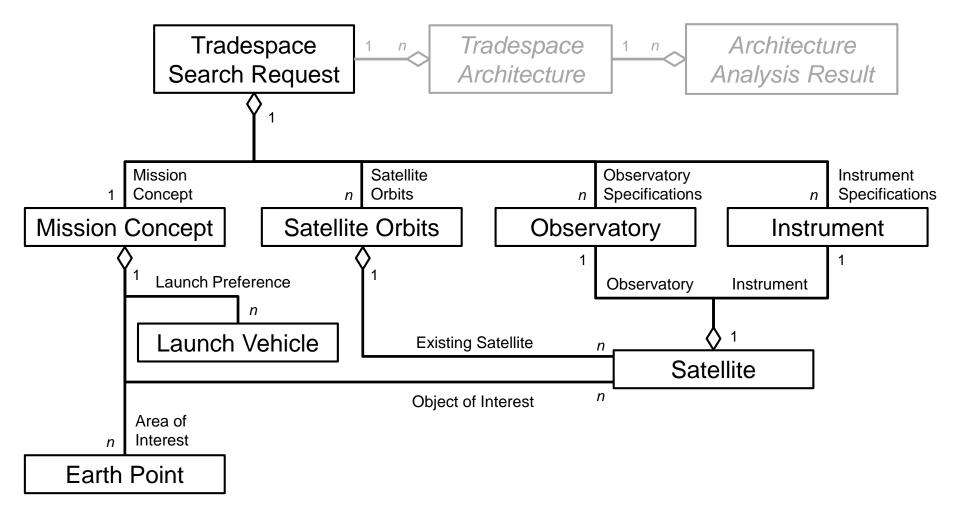
TAT-C Architecture

Tradespace Search Results

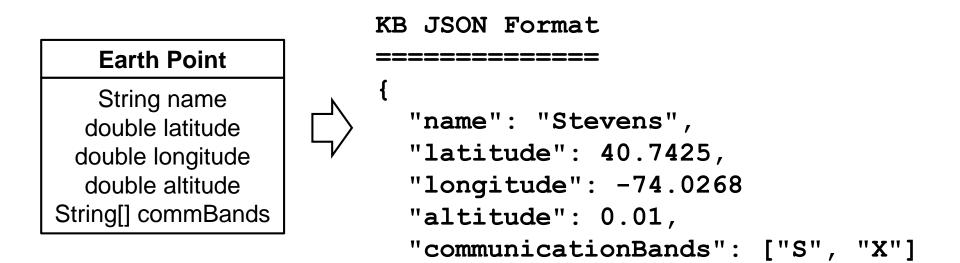


- Cumulative, common repository of information and meta-information about DSMs
 - Knowledge representation goes beyond data structure and syntax to also incorporate semantics and meaning
 - Loosely coupled with TAT-C, generally applicable to DSMs
- Preliminary services and features:
 - Store and retrieve tradespace search requests
 - RESTful application programming interface (API)
 - Browser-based graphical user interface (GUI)

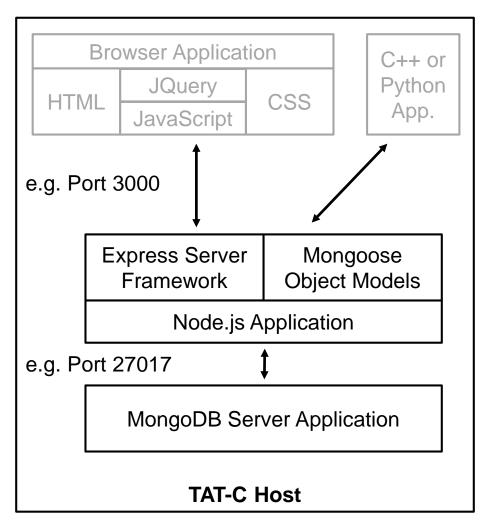

TAT-C Architecture with KB



- Layered architecture: each component can be hosted independently
- Client: request KB services
 - TAT-C, KB editor, or other
- Server: provide KB services
 - Store/retrieve data via queries
 - Reason/infer based on rules
- Simple HTTP API
 - Universal transport protocol
 - RESTful: stateless requests



TAT-C Object Models / Collections



Prototype KB Implementation

- Modified "MEAN" stack:
 - MongoDB database
 - Express web server
 - Node.js application platform
- Leverage common syntax for major components
 - JavaScript language
 - JavaScript Object Model (JSON) serialization
- Limiting to single (local) host addresses challenges to manage access control

Service	Method	API Route	Description	
List	GET	/api/collection	Lists all models in a collection Optional: selection/filter criteria	
Create	POST	/api/collection	Creates a new model in a collection	
Read	GET	/api/collection/:id	Reads a model in a collection specified by a unique identifier Optional: output in TAT-C format	
Update	PATCH	/api/collection/:id	Updates an existing model in a collection specified by a unique identifier	
Delete	DELETE	/api/collection/:id	Deletes an existing model in a collection specified by a unique identifier	

• Request:

GET http://localhost:3000/api/earthPoints

|--method--|---host---|port|----route----|

• Response:

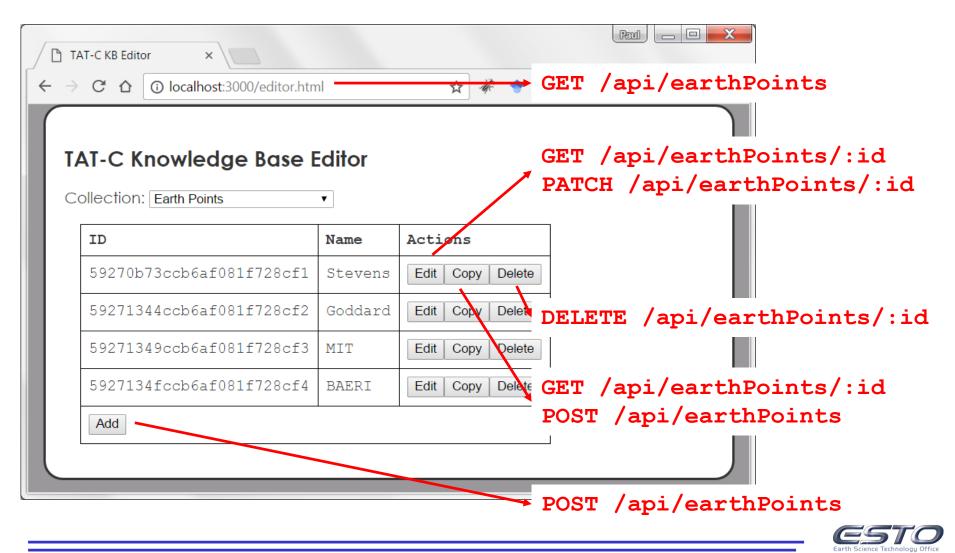
{"_id":"59270b73ccb6af081f728cf1","name":"Stevens"},
{"_id":"59271344ccb6af081f728cf2","name":"Goddard"},
{"_id":"59271349ccb6af081f728cf3","name":"MIT"},
{"_id":"5927134fccb6af081f728cf4","name":"BAERI"}

• Request:

GET http://localhost:3000 /api/earthPoints/592...cf1 • Request:

GET http://localhost:3000
/api/earthPoints/592...cf1
?format=tatc

• Response:


```
"_id":"592...cf1",
"longitude":-74.0268,
"latitude":40.7425,
"altitude":0.01,
"name":"Stevens",
"commBands":["S","X"]
```

• Response:

40.7425 -74.0268 0.01 S X

Prototype KB Editor

	TAT-C KB Editor	×		CT	am /	
		host:3000/editor.html	¥	- Gr 		api/earthPoints/:id
		Edit Earth Point			×	
	TAT-C Know	ID:	59270b73ccb6af081	f728cf1		
(Collection: Earth I	Name:	Stevens			
		Longitude:	-74.0268	0	deg	
	ID	Latitude:	40.7425	0	deg	
	59270b73ccb	Altitude:	0.01	0	km	
	59271344ccb	Communication Bands:	S-band			
	59271349ccb	Dands.	☑ X-band □ Amateur Radio			
			■ Ka-band ■ Ku-band			
	5927134fccb		Laser			
	Add					
	OK Reset Cancel				cel	
				► P/	ATCH	/api/earthPoints/:id

- DSMs have significant potential to improve and enable future Earth Science objectives
 - Need to assess anticipated performance, cost, and risk
 - Tradespace Analysis Tool for Constellations (TAT-C)
- The TAT-C knowledge base is a cumulative store of structured information about DSMs to inform analyses
- Prototype work on a KB for TAT-C demonstrates:
 - Storing/retrieving tradespace search requests
 - RESTful application programming interface (API)
 - Browser-based graphical user interface (GUI)

- Develop formal DSM ontological models
 - Merge with existing knowledge bases, e.g. Wikidata
 - Import/link to unstructured data from other public sources
- Closer integration with specific TAT-C modules to dynamically adapt to new information availability
- Open platform to wider collaborative use:
 - Authentication and authorization
 - Data access control and version control
- Close design feedback loops with automation:
 - Build new search requests using existing object models
 - Find desirable architectures via inference on prior results

Questions?

Paul T. Grogan

pgrogan@stevens.edu

