Signals of Opportunity Airborne Demonstrator (SoOp-AD): Results of First Field Experiment

James Garrison¹*, Yao-Cheng Lin¹, Benjamin Nold¹, Jeffrey R. Piepmeier², Manuel A. Vega², Matthew Fritts²,³, Cornelis F. Du Toit²,⁴, Joseph Knuble²

Earth Science Technology Forum 2017
Caltech Beckman Institute, Pasadena, CA

¹Purdue University, West Lafayette, IN, USA
²NASA Goddard Space Flight Center, Greenbelt, MD, USA
³SGT, Inc., Greenbelt, MD 20771, USA
⁴AS&D, Inc., Greenbelt, MD 20771, USA

*Corresponding Author: jgarriso@ecn.purdue.edu
Outline

- Root Zone Soil Moisture (RZSM)
- Potential advantage of P-band SoOp
- Overview of SoOp-AD Airborne instrument
- Little Washita, OK campaign: Oct 2016
- Data Processing and First Results
- Future Work
- Conclusions
Root Zone Soil Moisture (RZSM)

• Water in top ~1 meter of soil
• Critical link between surface hydrology and deeper process
• Drainage and absorption by plant roots
• Connection between near-term precipitation and long-term availability of fresh water
• Presently available globally – only through model assimilation of surface soil moisture (e.g. SMAP L4)
Importance of Sensing < 500 MHz

9.4 cm @ 25%, L-Band

17.7 cm @ 25%, P-Band

Sand: 40%, Clay: 20%, Temperature: 20 °C

ESTF 2017, Pasadena, CA June 13-15, 2017
Difficulty of Sensing < 500 MHz

ESA-BIOMASS 12-m Large Deployable Reflector (LDR) 435 MHz Operations prohibited over N. America and Europe due to Space Objects Tracking Radar (SOTR) [ESA SP-132, 2010]

Difficulty of Sensing < 500 MHz

- Large antenna size to meet resolution requirements
- No protected bands
- High RFI from terrestrial sources

Consequence: L-band (1-2 GHz) may be the current practical lower frequency limit for spaceborne radar or radiometer
P-band Signals of Opportunity (SoOp)

- Re-utilization of existing transmissions (e.g. potential RFI sources)
- Bands allocated for Space-Earth communications
- High power, forward scatter -> High SNR/smaller antenna
- Resolution set by signal bandwidth – not antenna diameter

P-band SoOp may offer first possibility of direct remote sensing of Root-Zone Soil Moisture (RZSM) from space
P-band Signals of Opportunity (SoOp)

- **225–420 MHz** allocation for defense/government use
- Continuous use by US & Others since 1978 (FLTSATCOM)
- Planned utilization through 2024
P-band Signals of Opportunity (SoOp)

- Multiple Low bandwidth (5, 25 KHz) digital channels.
- Well documented and (supposedly) easy to receive by:

Ionospheric Researchers

- SCINDA Sensor Suite
- VHF S4 index for
- GPS Receiver
- UHF Antenna

Hobbyists

- www.uhf-satcom.com
- www.crypto.com

Pirates

- "Nearly illiterate men rigged a radio in less than one minute” [Wired, April 20, 2009]

Signals of Opportunity Airborne Demonstrator (SoOp-AD)

- 2013 Instrument Incubator Program (IIP) Selection

- Objectives:
 - Airborne instrument to demonstrate SoOp concepts at P- and S-band
 - Breadboard digital receiver with “path to space” tested in relevant environment (TRL-5)
 - Airborne science instrument for future algorithm development

- Working requirements:
 - Resolution: 100 m (airborne), 1km (satellite)
 - Sensing depth: 0-30 cm
 - RZSM accuracy of 0.04 (volumetric)
Signals of Opportunity Airborne Demonstrator (SoOp-AD)

- Measurement Model

\[
\begin{align*}
\text{Direct signal} & \quad x_D(t) = \sqrt{C_D} a(t - \tau_D) e^{i \omega_c (t - \tau_D)} \\
\text{Reflected signal} & \quad x_R(t) = \sqrt{C_D \Gamma} a(t - \tau_R) e^{i \omega_c (t - \tau_R)}
\end{align*}
\]

Accounting for Direct-Reflected Interference:
- Null-Steering (post-process)
- Retrieval Forward model
- Vicarious calibration over water

ESTF 2017, Pasadena, CA June 13-15, 2017
Signals of Opportunity Airborne Demonstrator (SoOp-AD)

- Antenna Null-Steering (post-process)
Signals of Opportunity Airborne Demonstrator (SoOp-AD)

- Antenna Installation on NASA Langley B-200 Aircraft

P-band elements

2x2 element S-band array (integrated assembly shown with radome cover on aircraft)
Flight Campaign: Little Washita, OK

- Flight planning software: Showing ARS Micronet sites.
First Look at Data

- Functioning of correlator array:

<table>
<thead>
<tr>
<th>P1: Bottom H-pol</th>
<th>P2: Bottom V-pol</th>
<th>P3: Top H-pol</th>
<th>P4: Top V-pol</th>
</tr>
</thead>
</table>

ESTF 2017, Pasadena, CA June 13-15, 2017
First Look at Data

- Functioning of correlator array:

<table>
<thead>
<tr>
<th>P1: Bottom H-pol</th>
<th>P2: Bottom V-pol</th>
<th>P3: Top H-pol</th>
<th>P4: Top V-pol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay (us)</td>
<td>Delay (us)</td>
<td>Delay (us)</td>
<td>Delay (us)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>10^{11}</td>
<td>10^{11}</td>
<td>10^{11}</td>
<td>10^{11}</td>
</tr>
</tbody>
</table>

ESTF 2017, Pasadena, CA June 13-15, 2017
First Look at Data

- Flight Date: 10/22/2016
First Look at Data: "Quick Look" Processing
First Look at Data: Antenna Null-Steering and Adjustment

- Lake Ellsworth Overflights

Science Flight 3 (10/22)
Science Flight 5 (10/25)
First Look at Data: Antenna Null-Steering and Adjustment

- Science Flight 3 (10/22/2016)
First Look at Data: Antenna Null-Steering and Adjustment

- Science Flight 5 (10/25/2016)
First Look at Data: Antenna Null-Steering and Adjustment

- Science Flights 3 and 5 overlay
Summary

- Completed engineering testing of “breadboard” FPGA correlator in “relevant environment” (TRL5)
- Completed first attempt at reflectivity retrieval using null-steering and vicarious antenna calibration
- Work in Progress (under IIP-13):
 - Comparison of reflectivity retrieval vs. in-situ observations
 - Comparison vs. SLAP data
 - Processing of S-band data
 - Processing of full-spectrum P-band data
 - Definition of satellite mission requirements
- Future Work:
 - Soil moisture profile retrieval algorithms
Acknowledgements

- This work was funded under NASA Grant NNX14AE80G (2013 Instrument Incubator Program).
- USDA (Michael Cosh) provided valuable assistance with utilizing the Little Washita ARS Micronet data.