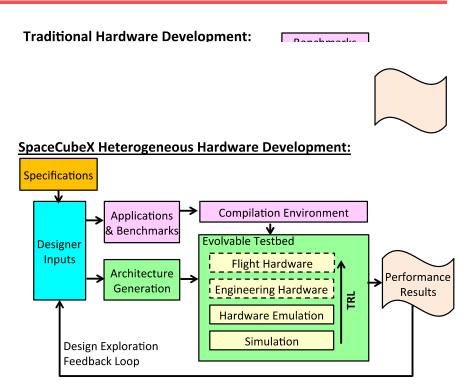


SpaceCubeX: Emulation Results of Hybrid On-board Processing Architectures

Matthew French, Andrew Schmidt, Gabe Weisz – USC / ISI Tom Flatley, Gary Crum, Jonathan Bobblit – NASA GSFC Carlos Villalpando, Robert Bocchino – NASA JPL June 13th, 2017

Motivation: Next Gen NASA Earth Science Missions

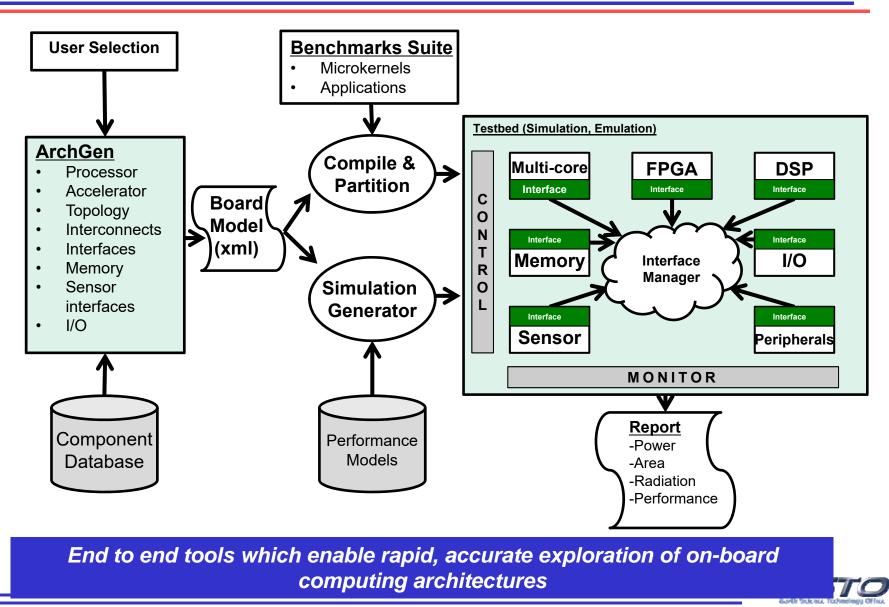
- New Instruments required to produce essential data to help scientists answer critical 21st century questions
 - Global climate change, air quality, ocean health, ecosystem dynamics, etc...
- Missions specifying instruments with significantly increased:
 - Temporal, spatial, and frequency resolutions \rightarrow to global, continuous observations
 - Current/near-term data at rates >10⁸ to 10¹¹ bits/second
- On-board processing ~100-1,000x than previous missions (compression, storage, downlink)
- Adding new capabilities such as low-latency data products for extreme event warnings

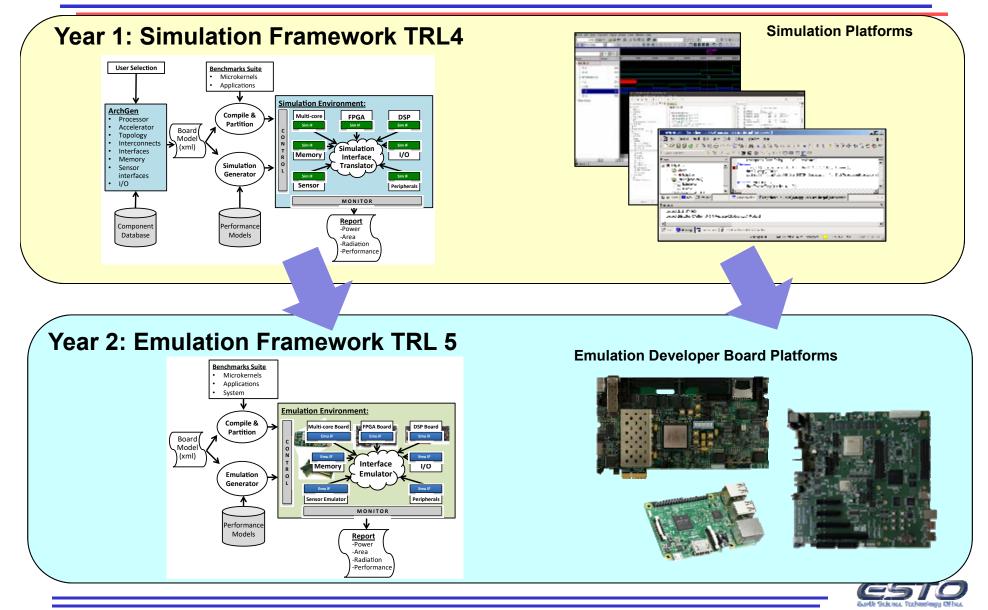

Hybrid computing is a key cross-cutting technology directly applicable to missions recommended in the Decadal Survey



SpaceCubeX Project

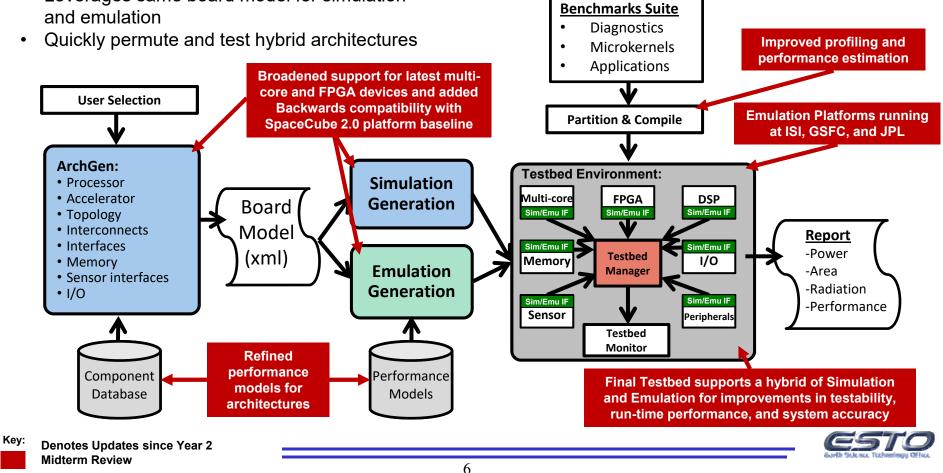
- SpaceCubeX Architecture Analysis Framework:
 - Enables selection of the most SWAP efficient processing architecture, with direct impact on mission capabilities, cost, and risk.
 - Look ahead performance estimates for new processors, such as the anticipated NASA High Performance Spaceflight Computer (HPSC).
 - Reduces risk due to supply chain disruptions by allowing a user to rapidly compare alternative component selections.
 - Leverages a suite of high performance Earth science scenarios to ensure robust architecture characterization.
 - Utilizes a proven programming model to facilitate interoperability between commercial compilers.





Onboard Computing Analysis Framework

Framework Maturation


SpaceCubeX End-to-End Framework

Architecture Development

- Rapidly generate systems
- Simulate when hardware unavailable
- Emulate for increases in:
 - Data size, speed, and precision
- Leverages same board model for simulation • and emulation
- ٠

Application Development and Testing

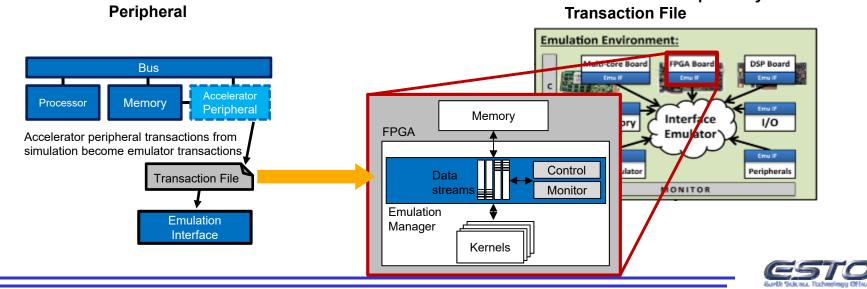
- Analyze and partition application for system
- Run application on full Linux heterogeneous system
- Refine application or hardware for target metrics ٠

Accelerator Peripheral and Emulation Manager

Accelerator Peripheral:

- Connects processor simulators with FPGAs and DSPs co-simulation environments
- Enables support for a diverse set of vendor specific simulators to work in concert for each generated architecture

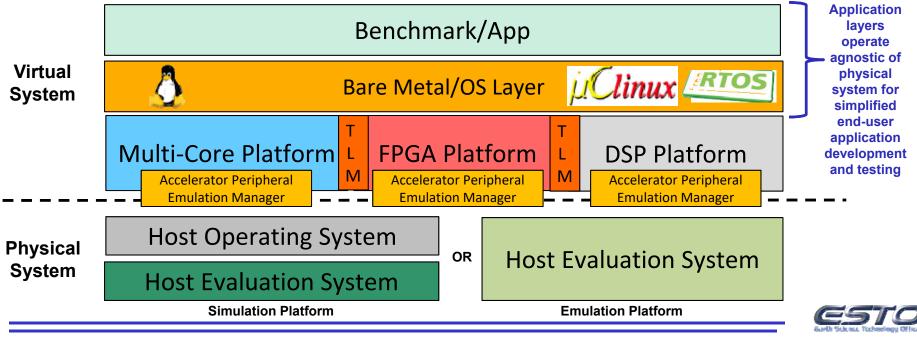
Emulation Manager: ٠


- Supplies realistic data transactions to kernels running in emulation environment on accelerators (i.e. FPGAs)
- Provides fine-grain control of transactions between multi-cores and accelerators for high precision analysis

Recent Enhancements: •

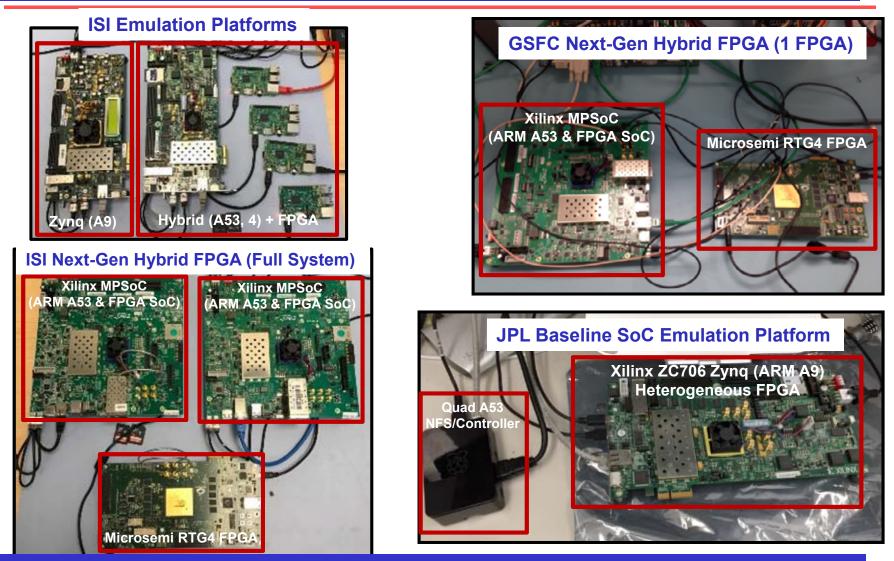
- Accelerator peripheral ported to all new architectures (i.e. ARM A53, Xilinx UltraScale+, Microsemi FPGAs)
- Transaction files now fully interoperable with emulation manager
- Now supports integrated simulation and emulation environments

Simulation Environment with Accelerator


Verified using RaspberryPi (ARM A53s) and Virtex7 months prior to Xilinx MPSoC boards available for emulation

Cross simulation/emulation compatibility with

- Simulation and Emulation Environment stack running on Host PC/HW
- SpaceCubeX's Hybrid architectures are effectively "virtual system"
- Able to provide support for bare metal and OS support in system
- Benchmarks using compilation flow can run in instruction accurate simulation and provide conventional debugging techniques
- Emulation Manager and Transaction Files unify run-time and support unmodified benchmark/application binaries running on each platform



- Main architectures generated and evaluated by SpaceCubeX framework:
- SpaceCube 2.0:
 - Legacy Xilinx Virtex5 FPGAs with embedded PowerPC 440 cores
- Zynq (A9, cores):
 - Single Xilinx Zynq 7045 FPGA with dual ARM A9 processors
- Hybrid (A53, cores)
 - ARM A53 processors found on Hybrid-FPGA or Hybrid-DSP board, HPSC equivalent processor
- Hybrid (DSP):
 - Quad ARM A53 with ClearSpeed CSX700 (simulated TI C6747 DSP core)
- Hybrid (FPGA):
 - Two Quad ARM A53 processor clusters with Virtex 7 FPGA
- Next-gen Hybrid (# FPGAs):
 - Configurable Multi-core (HPSC/Xilinx Zynq UltraScale+) with FPGAs
- Some "mutations" of these main branches explored but pruned based on results

Emulation Platforms

Emulation framework running at ISI, GSFC, and JPL for individual application development, testing, and to demonstrate SpaceCubeX portability

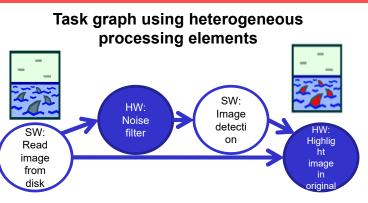
Office

Application Benchmark Suite

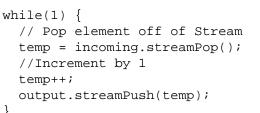
Benchmark	Description					
Micro Benchmarks	Kernels to benchmark architecture subcomponents and measure system viability.					
NAS Parallel Benchmarks	NASA generated set of programs designed to help evaluate the performance of parallel supercomputers, derived from computational fluid dynamics (CFD) applications and consist of five kernels and three pseudo-applications					
Packet Routing	2 kernels: Packet generation and transmission & Packet reception and verification					
ATCORR	Atmospheric correction algorithm commonly used in Hyperspectral and other sensing applications					
Hyperspectral Classifiers	Two classification kernels: Sulfur, Thermal					
Hyperspectral Compression	Lossless Compression algorithm tuned for hyperspectral data					
Image segmentation and segment analysis	Autonomous spacecraft tasking, geological feature identification, analysis, and data handling. (HPFEC-3)					
Image Classification	Common image processing kernels including feature extraction, shape analysis, and surface analysis. (HPFEC-4)					
	Final Result					

11

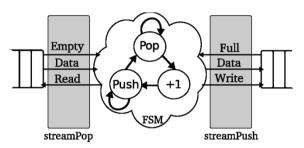
Application Mapping Process


- Existing applications:
 - Port code, recompile
 - Existing FPGA extremely helpful

New Applications:

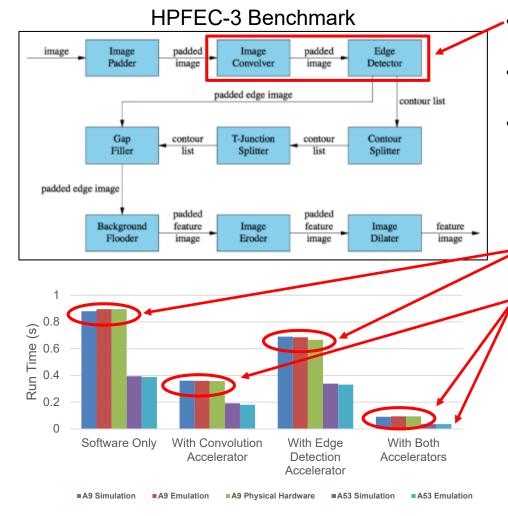

- Utilize Redsharc to encapsulate kernels using common interface API to facilitate migrating kernels between heterogeneous elements (CPU, DSP, FPGA)
- **Redsharc**: Reconfigurable Datastream Software / Hardware ARChitecture
 - Redsharc infrastructure utilized to standardize simulation framework
 - Application developers target API and get infrastructure for 'free'

Optimization


- Reasonable effort level approach taken
- Goal to identify best board level architecture, not a mission level application optimization project

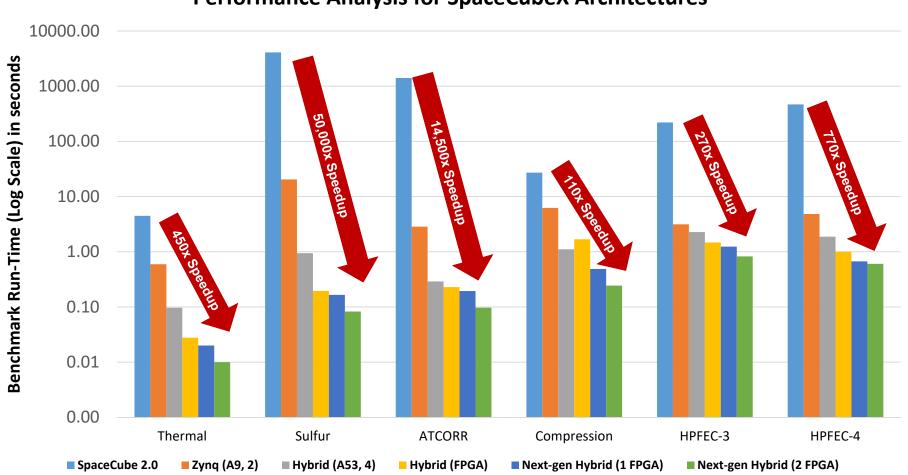
REDSHARC Uniform APIs

Software API Instantiation



Hardware API Instantiation

How Well Does the SpaceCubeX Framework Predict Performance?


Achieving less than 6% error in Simulation vs. Emulation

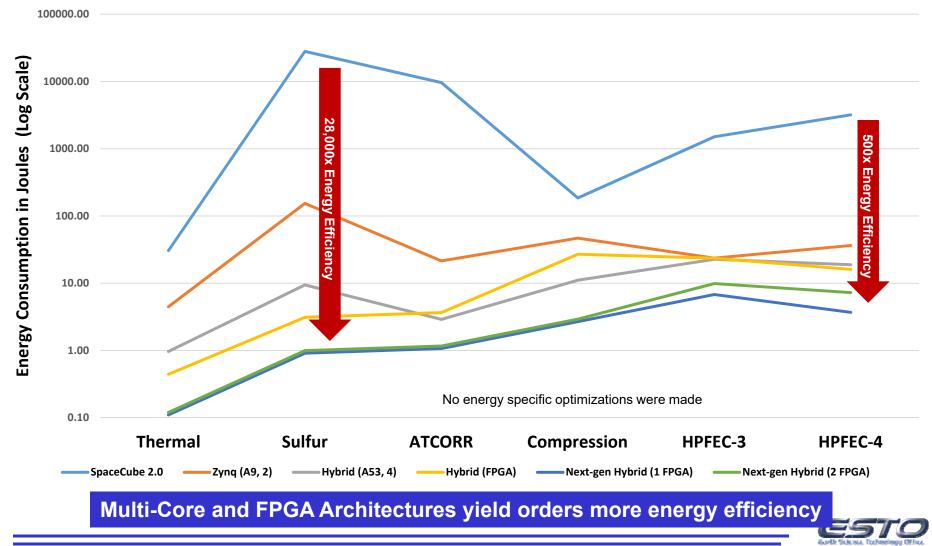
- The benchmark includes 2 accelerators, which each process 1 pixel/cycle
- The application dynamically activates either or both accelerators
- When using both accelerators, data streams between the accelerators, saving a round-trip to memory

Simulated and emulated performance estimates reflect real-world performance Chaining two accelerators makes a huge difference in performance

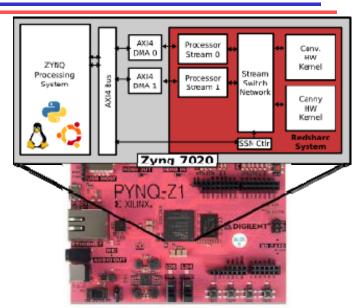
HPFEC-3 Comparisons for Edge Detection							
	Sim vs. Emu	Speedup					
A9	1 Core (Both)	1.92%	1.00				
A9	2 Core (Both)	1.72%	1.89				
	Conv FPGA + 2 SW Edge	0.22%	4.71				
A9+FPGA	2 SW Conv + FPGA Grad (SW Rest)	0.65%	2.47				
	FPGA Conv + FPGA Grad (SW Rest)	3.22%	18.21				
	1 Core (Both)	1.43%	1.20				
A53	2 Core (Both)	1.95%	2.38				
	4 Core (Both)	1.54%	4.37				
	Conv FPGA + 4 SW Edge	5.93%	9.40				
A53+FPGA	4 SW Conv + FPGA Grad (SW Rest)	2.09%	5.11				
	FPGA Conv + FPGA Grad (SW Rest)	0.29%	48.49				
		CS Gardh Salense, Tech					

SpaceCubeX: Performance Comparison


Performance Analysis for SpaceCubeX Architectures


Hybrid Multi-Core/FPGA Architectures provides orders of magnitude higher performance

SpaceCubeX: Energy Comparison



Application Development Productivity with Python

- Xilinx PYNQ platform combines Python with Zynq SoC to attract orders of magnitude more developers
 - Significant shift for FPGA community
- Worked Xilinx to integrate portions of SpaceCubeX framework into PYNQ platform and evaluate gains
 - Running full Edge Detection benchmarks from SpaceCubeX
 - Evaluation enabled design space exploration with highly tuned software
 - Performance results represent FPGAs still offer significant advantages
- Allows team to leverage huge Python development community for libraries, tools, and modularity to support more diverse applications
- Won Best Short Paper at FCCM 2017 in May
 - "Evaluating Rapid Application Development with Python for Heterogeneous Processor-based FPGAs"
- Work highlighted in Xilinx Xcell and The Next
 Platform publications

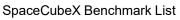
Xilinx PYNQ platform with SpaceCubeX's Edge Detector

In []:	## Create Overlay Bitstream Object							
	<pre>bit0 = Overlay(""project.bit"")</pre>							
	## Program Bitstream							
	<pre>bit0 . download()</pre>							

Simple API for complex tasks like FPGA programming

Performance Comparison of Edge Detector on PYNQ

Configuration	Time (s)	Speedup	
C Version - 1 Thread	2.0516	1.00×	
C Version - 2 Threads	1.0660	1.93×	
OpenCV Version - 2 Threads	0.0896	22.91×	
HW Accelerated Version	0.0765	$26.80 \times$	
Python OpenCV Version	0.1795	11.43×	
PYNQ HW Accelerated Version	0.0679	$30.21 \times$	

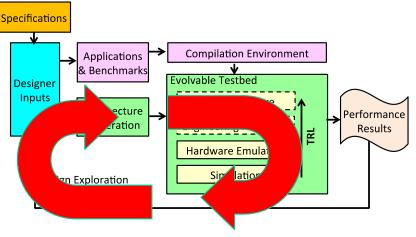


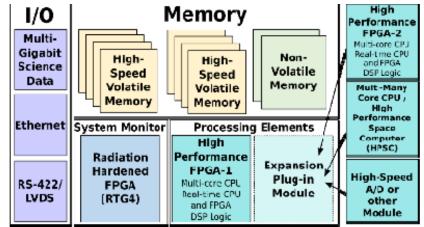
- Ran over 425 benchmark application experiments on 15 different permuted architectures for processors, FPGAs, and DSPs in simulation and emulation
- Demonstrated accuracy of simulation and emulation (~6%)
- Demonstrated application portability directly from simulation to emulation
- Next generation multi-core and FPGAs providing orders of magnitude (100x -50,000x) over existing technology
 - Recommending as SpaceCube 3.0 hardware architecture
- Modeling application performance to further improve developer efficiency

General observations

- ARM A53 significantly outperforms A9
- ARM A53 with FPGAs dramatically improve performance of highly parallel applications
- Integrated multi-core and FPGAs (i.e. Xilinx Zynq UltraScale+) offer 2x - 10x speedup and energy efficiency vs. multiple discrete parts (i.e. ARM A53 + Virtex7)
- Multi-core architectures provide fast, scalable approach
- Hybrid DSP architecture lagging
- Hybrid architectures provide best performance / power

Турс	Name	Space Cube 2.0		Zynq		Hybrid				Next-gen Hybrid	
		1 PPC	2 PPCs	1 ARM A9	2 ARM A95	1 ARM A53	4 ARM A535	4 A536 + FPCA	4 A536 + 11912	4 //53s + 1 FP/CA	8 A536 + 2 FPGA
Diagnostic	Memory Test	Y	Y	Y	Y	Y	Y	NA	N/A	Y	Y
Diegnostic	Interfaces est	Y	Y	Y	Y	Y	Y	NA	N/A	Y	Y
Micro- Benchmark	Dhrystone	Y	NA	Y	N/A	Y	NA	NA	N/A	Y	Y
Micro Benchmark	Whetstone	Y	N/A	Y	N/A	Y	N/A	NIA	N/A	Y	Y
Aicro- Benchmark	Linpack	Y	N/A	Y	N/A	Y	N/A	NA	N/A	Y	Y
Micro- Benchmark	NAS Parallel Benchmarks	Y	NA	Y	Y	Y	Y	NA	N/A	Y	Y
Application	GSFC Packet Generation	γ	Y	Y	Y	Y	Y	NA	N/A	Y	Y
Application	GSFC Packel Validation	Y	Y	Y	Y	Ŷ	Y	NA	N/A	Y	Ŷ
\pplication	SAR	Ν	N (Single Core)	Y	N (Single Core)	Y	N (Single Core)	NIA	N/A	Y	Y
Application	ATCORR	Y	N (Single Core)	Y	N (Single Core)	Υ	N (Single Core)	Y	Υ	Y	Y
Application	SVM Sullur	Y	N (Single Core)	Y	N (Single Core)	Y	N (Single Core)	Y	Y	Y	Y
Application	Hyper. Thermal	Y	N (Single Core)	Y	N (Single Core)	γ	N (Single Core)	Y	Y	γ	Y
Application	Hyper. Compression	Y	Y	Y	Y	Y	Y	Y	Ŷ	Y	Ŷ
Benchmark	HPFEC-3	Y	N (Single Core)	Y	Y	Y	Y	Y	Y	Y	Y
Benchmark	HPFFC-4	Υ	N (Single Core)	Y	Y	Y	Y	Y	Y	Y	Y




Major Technical Accompliate

- Fully functional emulation architecture
 - Supports migration from simulation to emulation with no recompile
 - Supports hybrid simulation and emulation
 - Well beyond commercial single core offerings
- On-board computing architecture trade space evaluation completed
 - 5 State of the Art computing architecture evaluated at the detailed emulation level on over 400 experiments
- Strong candidate SpaceCube 3.0 architecture selected
 - 60-28,000x increase in energy efficiency
 - Hybrid Xilinx UltraScale+ SoC and Microsemi RTG4 FPGA
 - Radiation hardened and high-performance radiation tolerant FPGAs
 - Ability to add additional processing elements
 - Additional Xilinx MPSoC, NASA/AFRL HPSC processor, or application specific A/D or D/A modules

SpaceCubeX Heterogeneous Hardware Development:

Recommended SpaceCube 3.0 Architecture

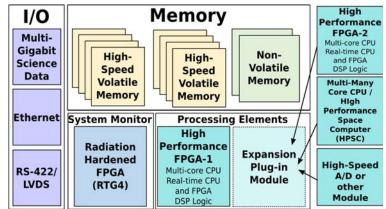
Future Research

- SpaceCubeX AIST-14 effort generated 2 major technology thrusts:
 - On-board Computing Analysis Framework
 - SpaceCube 3.0 Architecture
- Utilize AIST-14 framework to aide in development of additional applications
 - Fluid Lensing 3D Reconstruction
 - MiDAR active multispectral imaging
 - Model Predictive Control Architecture for Optimizing Earth Science Data
 - Radio Frequency Interference Detection and Mitigation
- On-board Computing Analysis Framework Extensions
 - Multi-satellite extensions
 - Inclusion of airborne processors
- SpaceCube 3.0 Architecture
 - Develop prototype hardware

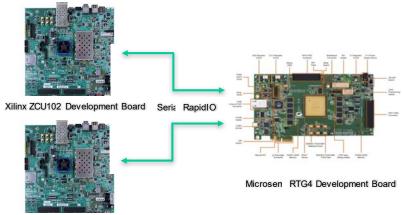
Fluid Lensing Image

Multi-Satellite, Distributed Sensing Mission Enabled by SpaceCubeX Extensions

QUESTIONS?


Recommended Prototype SpaceCube 3.0 Architecture: Next-gen Hybrid FPGA

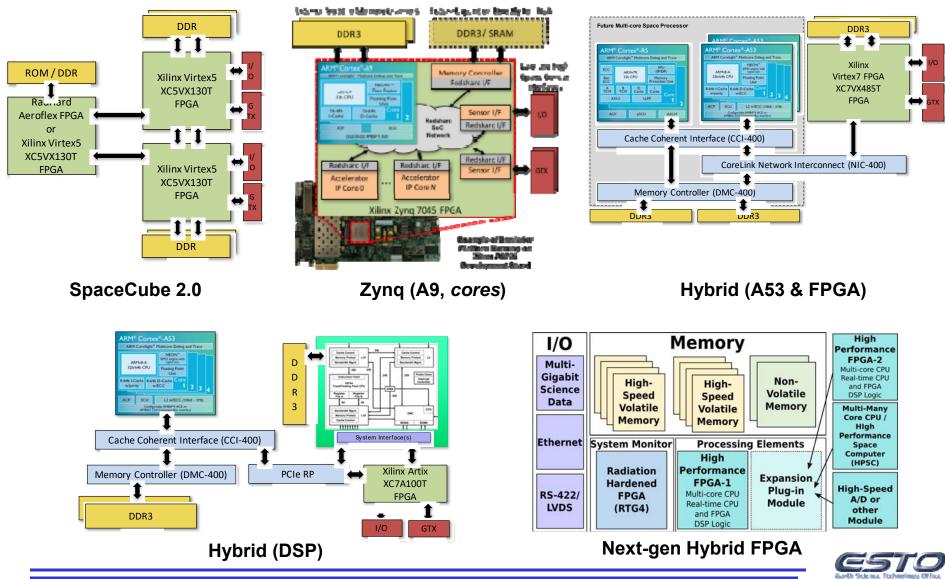
- Highest overall performance vs state of practice onboard computing
 - Microbenchmarks: 150 400x
 - Application Benchmarks: 110x 50,000x
 - Energy efficiency: 60x 28,000x
 - With reserve capacity up to 90% FPGA resources
- Design concept includes:
 - Hybrid Xilinx UltraScale+ SoC and Microsemi RTG4 FPGA
 - Radiation hardened and high-performance radiation tolerant FPGAs
 - Coupled with a high-speed interfaces, memory
 - Ability to add additional processing elements
 - Additional Xilinx MPSoC, NASA/AFRL HPSC processor, or application specific A/D or D/A modules


Best feasible path to support new mission capabilities

- Autonomous instrument control
- Distributed measurement
- Multi-satellite missions

Proposed SpaceCube 3.0 Architecture

SpaceCube 3.0 Emulation Platform


Xilinx ZCU102 Development Board

Competition Sensitive

Architecture Overview

