A 183 GHz Humidity Sounding Radar Transceiver
ACT-13

Earth Science Technology Forum, Pasadena, CA
June 15, 2017

Ken Cooper, Matt Lebsock, Jose Siles, Raquel Monje, Luis Millan, Choonsup Lee, Pekka Kangaslahti, Goutam Chattopadhyay, Robert Lin, David Gonzalez, & Simone Tanelli

Jet Propulsion Laboratory, California Institute of Technology

Copyright 2017 California Institute of Technology. Government sponsorship acknowledged.
Clouds are the single most important source of uncertainty in predictions of climate sensitivity.

Problem: passive radiometry is unreliable inside clouds because: (1) broad weighting functions are used that encompass both clouded and cloud-free regions and (2) clouds obscure the relationship between passive brightness temperatures and water vapor.

Therefore, a remote sensing instrument capable of measuring humidity inside cirrus clouds on a global scale is needed.
JPL’s Approach: 183 GHz Differential Absorption Radar

- **Concept**: use the scattering of ice crystals in cirrus clouds to measure range-resolved differential absorption of radar signals on and off the 183 GHz water line.

- Similar to widely used lidar techniques (DIAL) and microwave differential absorption at 60 GHz to measure integrated O_2 absorption from sea surface reflection.
Radar Sensitivity Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>along-track resolution</td>
<td>500 m</td>
</tr>
<tr>
<td>cloud thickness resolution</td>
<td>500 m</td>
</tr>
<tr>
<td>platform velocity</td>
<td>110 m/s</td>
</tr>
<tr>
<td>receiver noise figure</td>
<td>8 dB</td>
</tr>
<tr>
<td>antenna diameter</td>
<td>25 cm</td>
</tr>
<tr>
<td>distance from cloud top</td>
<td>0.5-1 km</td>
</tr>
<tr>
<td>cloud top reflectivity</td>
<td>-30 dBZ</td>
</tr>
</tbody>
</table>

0.1-1 W power levels give reasonable humidity estimates with 1 km integrated range. 1 W clearly probes wider/deeper regime.
What’s Needed to Make It Work

High-level overview:

- All-solid-state transmitter & receiver to achieve smallest SWAP.
- Ultra-high transmit/receive isolation for continuous-wave measurements.
- Wide tunability over the 183 GHz water line for probing a variety of cloud densities and depths.
Power-Combining at 183 GHz

Four-way “on-chip” power combining

quad-chip device

91-97 GHz input

bottom layer

182-194 GHz output

top layer
Quad-Chip 183 GHz Doubler

Raytheon 92 GHz GaN power amplifiers: leveraging security for remote sensing science.

Stacked-Chip Power Combining

- Higher powers likely if we push it
- Stable with 1.2W drive power (210 mW output) for >100 minutes
- 1 W goal is within reach with power-combining

![Diagram with diodes, G-band output waveguide, W-band input waveguide, and graph showing output power versus frequency. The graph indicates up to 24% efficiency with 800 mW input! with a 2 cm scale.]
FMCW radar design based on 340/680 GHz security radar architecture.
183-193 GHz Radar Test-Bench: Hardware

- optics gain: 40 dB
- receiver NF: 7 dB
- detectable rain reflectivity at 300 m, 3 ms integration: -28 dBZ
Tree & Hill Clutter Measurements
Measuring Humidity Using Clutter Targets

averaging 300 MHz, 0.5 ms chirps

183.5:193 GHz spectra

- tree branches
- hillside

it's looking real!

propagation model for very dry conditions
Clutter Target Statistics of Blowing Trees

Frequencies are switched every ~30 seconds here.

Dynamics of target brightness must vary more slowly than ~10 minutes for this approach to work.
Rain (or Clouds): An Excellent Clutter Target

It finally rained at JPL!

- No more problems with blowing corner reflector poles or tree branches
- No radiometer satellites were overhead: transmitting 183-193 GHz is sensitive.
Crucial Technique: Fast Frequency “Switching”

- Perform entire 9.5 GHz chirp at once (in 32 ms) before the clutter target can decorrelate
- Acquire 500 total chirps in a row
- Calculate relative attenuations
Accurate Humidity Measurements Are Possible!

- Received power (arb. dB) vs. range (m)
 - 192.5 GHz
 - 183.5 GHz

- Tx frequency (GHz) vs. range difference: 50 and 175 m
 - Higher absorption
 - 175±5 m avg. pow.

- Relative attenuation to 193 GHz (dB/km)
 - Measurement
 - Model average

Range difference: 50 and 175 m
Conclusions

• New power-combining architectures are being developed for a 183 GHz differential absorption radar transceiver.

• 500 mW has been achieved, but for stable results new isolated-port power combining designs are now being fabricated and tested.

• Radar test-bench experiments show that differential absorption radar can effectively measure humidity inside rain. This is a new measurement technique!

• The measurements require fast frequency-switching when targets have potential for decorrelating.