PERFORMANCE ANALYSIS OF A HARDWARE IMPLEMENTED COMPLEX SIGNAL KURTOSIS RADIO-FREQUENCY INTERFERENCE DETECTOR

Adam J. Schoenwald¹,²
Adam.Schoenwald@nasa.gov

Dr. Damon C. Bradley¹, Dr. Priscilla N. Mohammed¹,³,
Dr. Jeffrey R. Piepmeier¹, Dr. Mark Wong¹

(1) NASA Goddard Space Flight Center, Greenbelt, MD
(2) ASRC Federal, Greenbelt, MD
(3) Goddard Earth Sciences Technology and Research, Morgan State University

To be presented by Adam Schoenwald at the 2016 Earth Science Technology Forum (ESTF2016), Annapolis, MD, June 14-16, 2016
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>Area Under Curve</td>
</tr>
<tr>
<td>CSK</td>
<td>Complex Signal Kurtosis</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous Wave</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>DVB-S2</td>
<td>Digital Video Broadcasting - Satellite - Second Generation</td>
</tr>
<tr>
<td>FB</td>
<td>Full Band</td>
</tr>
<tr>
<td>Gbps</td>
<td>Billions of Bits per Second</td>
</tr>
<tr>
<td>INR</td>
<td>Interference to Noise Ratio</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>RFI</td>
<td>Radio Frequency Interference</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>RSK</td>
<td>Real Signal Kurtosis</td>
</tr>
<tr>
<td>SB</td>
<td>Sub Band</td>
</tr>
</tbody>
</table>
Motivation

RFI compromises quality of science products.

Spectrum is becoming crowded and shared.

Hardware capabilities allow for digital radiometry.

Need more sensitive detectors for wide-band interference.
Real Signal Kurtosis

Given a complex baseband signal $z(n) = I(n) + jQ(n)$, the fourth standardized moment is computed independently for both the real and imaginary vectors, I and Q, as was used in SMAP[3].

$$RSK\downarrow I = \frac{\mathbb{E}[(I-\mathbb{E}[I])^4]}{(\mathbb{E}[(I-\mathbb{E}[I])]^2 - 3}, \quad RSK\downarrow Q = \frac{\mathbb{E}[(Q-\mathbb{E}[Q])^4]}{(\mathbb{E}[(Q-\mathbb{E}[Q])]^2 - 3}

The test statistic, RSK (Real Signal Kurtosis), is then defined as

$$RSK = |RSK\downarrow I| + |RSK\downarrow Q|/2$$
Complex Signal Kurtosis

Given a complex baseband signal \(z(n) = I(n) + jQ(n) \), moments \(\alpha_{\ell,m} \) of \(z(n) \) are defined as

\[
\alpha_{\ell,m} = \mathbb{E}[(z - \mathbb{E}[z])^{\ell} (z - \mathbb{E}[z])^{m*}] , \ell, m \in \mathbb{R}_{\geq 0}
\]

With \(\sigma^2 = \alpha_{1,1} \), Standardized moments \(\varphi_{\ell,m} \) can then be found as

\[
\varphi_{\ell,m} = \alpha_{\ell,m} / \sigma^{\ell+m}
\]

Leading to the CSK (Complex Signal Kurtosis) RFI test statistic used [1,2].

\[
C_{\ell} = \varphi_{2,2} - 2 - |\varphi_{2,0}|^2 / 1 + 1/2 |\varphi_{2,0}|^2
\]
Moment Calculation

Using the nomenclature for raw moments of the rth power, \(m_I^{r} = \mathbb{E}[I^r] \), \(m_Q^{r} = \mathbb{E}[Q^r] \), full band moments produced to compute kurtosis include

\[\{ m_I^r , m_Q^r \} , \quad r \in \{1,2,3,4\} \]

Additionally, the following cross complex moments are generated

\[\{ mIQ, mIQQ, mIIQ, mIIQQ \} \]

In the case of sub-banding, all 12 moments for each polarization are produced for every sub-band.
Methodology

Simulation
- Noise + RFI Test Signals
- Python Algorithms
- Performance Evaluation

Hardware Verification
- COMPUTER
 - Matlab
 - Python
- AWG
- FPGA Firmware
- ROACH2
 - ADC
 - Ethernet (10 Gbps)

Performance Evaluation
- Matlab Simulink Xilinx
- Python
Simulation Results

![Simulation - ROC Curves](image1)

- CW RFI, N = 20000

![Simulated Pulsed Narrow Band at INR = -20dB](image2)

- Full Band RSK
- Full Band CSK
- Sub Band RSK
- Sub Band CSK

To be presented by Adam Schoenwald at the 2016 Earth Science Technology Forum (ESTF2016), Annapolis, MD, June 14-16, 2016
Simulation Results

Simulated Performance, RSK and CSK, N = 20000

Area Under ROC Curve

INR

Narrow Band d=0.01 SB CSK | INR = -27
Narrow Band d=0.01 SB RSK | INR = -26.4
Narrow Band d=0.01 FB CSK | INR = -19
Narrow Band d=0.01 FB RSK | INR = -18.4
Narrow Band d=1 SB CSK | INR = -15.4
Narrow Band d=1 SB RSK | INR = -13.3
Narrow Band d=1 FB CSK | INR = -8.47
DVB-S2 d=1 SB CSK | INR = -8.15
DVB-S2 d=1 FB CSK | INR = -7.89
Narrow Band d=1 FB RSK | INR = -7.65
DVB-S2 d=1 FB RSK | INR = -6.93
DVB-S2 d=1 SB RSK | INR = -4.84
Hardware Results

Hardware ROC, Wideband RFI, N = 20000

Hardware ROC, Narrowband RFI, N = 20000
Hardware Results

Hardware Performance, RSK and CSK, N = 20000

Area Under ROC Curve vs INR for Narrow and Wide Band CSK and RSK.
Conclusions

CSK (*Complex Signal Kurtosis*) provides a better detection rate than real signal kurtosis.

Interference becomes detectable at an INR (*Interference to Noise Ratio*) of 2dB lower than what can be detected using RSK (*Real Signal Kurtosis*).

The research team would like to thank the NASA Earth Science Technology Office NNH13ZDA001NACT program for funding this research.
References

