www.hdfgroup.org

HDF Performance on OpenStack

June 15, 2016

John Readey |-Tﬂ'\e HDF Group

The HDF Group
jreadey@hdfgroup.org

Mission

* Investigate performance of using HDF5 in a cloud environment

* Measure performance using standard library
* Compression
* Chunk layouts
* File aggregation
* |Investigate ways to harness cloud specific capabilities:
* Elastic Compute — create compute instances on demand
* Object Storage — utilize object store for persistent storage

* Comparison to use of other frameworks like Hadoop or Spark

* Determine future work that would enable HDF5 to perform better in
the cloud

Evaluation Criteria

e Evaluation Criteria
* Performance — how fast can a typical science problem be computed
» Storage — How much storage is needed for the dataset
» Usability — how easy is it to perform tasks typical of science analytics
* Scalability -- How effectively can multiple cores be used
e Cost — Cost metrics (storage+compute) for various solutions

Plan of Investigation

* Select test dataset
 NCEP3 —(720,1440) gridded data — 7980 files - 130 GB uncompressed

* Choose a science problem
 Calculate min/max/avg/stdev for a given dataset

* Select compute platform
* OSDC Griffin — OpenStack, 300 nodes

* Investigate HDF5 performance

* Phase 1: using one compute node
» Vary chunk layout/compression filters
* Phase 2: using using multiple nodes
* Phase 3: client/server with HDF Server

e Plan for Future work

Hardware

e Using Open Science Data Cloud Griffin cluster

e Xeon systems with 1-16 cores
Y openstack
* 300 compute nodes CLOUD SOFTWARE

* 10Gb Ethernet
* Ephemeral local POSIX file system
* Shared persistent storage (Ceph object store, S3 API)

CSDC

OPEN SCIENCE DATA CLOUD

Software

 HDF5 library v1.8.15

* Compression libraries: MAFISC/GZIP/BLOSC

* Operating system: Ubuntu Linux

* Linux development tools

* HDF5 tools: h5dump, h5repack, etc.

* Python 3

* Python packages: h5py, NumPy, ipyparallel, PyTables
 HDF Server: https://github.com/HDFGroup/h5serv
e H5pyd: https://github.com/HDFGroup/hpd

OpenStack at OSDC in Brief

* Instances can be created either programmatically or via web console
* Compute Instances initialized from snapshot or image file

* Many different instance configurations available
* RAM 2GB —-100GB
* Disk 10GB — 2TB
* Onboard disk is ephemeral! — will be lost when the instance is shut
down

Python Test
Driver

h5py

hdf5lib

—
Local Disk

Test Instance

Instance is created

Data files copied from object storage to instance

Test driver is run

Results and performance measurements stored in Object
Store

4+ 3201 @

Instance is shut down

@) O O

Object Storage

HDF5 Chunking and compression

* Chunking is one of the storage layouts for HDF5 datasets

* HDF5 dataset’s byte stream is broken up in chunks and stored at
various locations in the file

* Chunks are of equal size in dataset’s dataspace but may not be of
equal byte size in the file

* HDFS5 filtering works on chunks only

* Filters for compression/decompression, scaling, checksum
calculation, etc.

HDF5 Chunking and compression

Contiguous

I
4+

(default)

Chunked

Chunked &
Compressed

™

-

=)

1
-+

1
NN

HE A

Data elements
stored physically
adjacent to each
other

Better access time
for subsets;
extendible

Improves storage
efficiency,
transmission speed

Determining chunk layouts

* Two different chunking algorithms:
* Unidata’s optimal chunking formula for 3D datasets
* h5py formula

* Three different chunk sizes chosen for the collated NCEP data set:
* Synoptic map: 1x72x144
 Data rod: 7850x1x1
* Data cube: 25x20x20

* Best layout depends on how what the applications access pattern is

Results — Compression Size

Compressed Size (GB)

None blosc gzip mafisc

140
120
100
80
60
40
20

MAFISC performed best, but is a lossey
compressor.
Blosc and gzip have reduction of ~60%

Results — Runtime

e Load from S3: ~60m

* Runtime:
* No Compression/no chunking: 11.8m
* (1x72x144) chunk layout/gzip: 5.2m
* (25x20x20) chunk layout/gzip: 68.6m
e (7850x1x1) chunk layout/gzip: 15.4d

e Full results at: https://github.com/HDFGroup/datacontainer/blob/master/results.txt

Phase 2 — Utilizing multiple nodes

* One advantage of cloud environments is on-demand compute, the
ability to instantiate and provision compute nodes programmatically

* Frameworks like Hadoop or Spark harness the power of multiple
compute nodes to get work done faster

* How easy would it be to utilize multiple instances with OpenStack
and the standard HDFS5 library?

Cluster Challenge

e Other systems (e.g. Hadoop) support clusters out of the box
* HDF5 does not...

* ... So create “on-demand” cluster
* Wrote code to launch VM'’s programmatically
* Connect using ZeroMQ
Run with parallel Python
Modify test driver to support parallel Python
Wrote Python module to distribute data across engines

Python NiPytEonk
Scripts otz ,OO
Gui

Application Layer

Kt htp

Jupyter iPython HDF
Notebook Parallel Controller

Controller

f ZeroMQ‘

Engine Nodes

4+ s3a0 @

O O
OOQO

Object Storage

Users connect to web-based Jupyter Notebook
Run code via REPL or submit scripts
Plot results using Matplotlib or other plotting package

Controller Runs on VM & listens for client requests
Runs Notebook kernels

Spins up Engines as needed

Dispatches work to engines (via iPyParallel/0MQ)

Engine VMs create on demand by controller

Each VM reads a partition of data from object store
Code to be run pushed by controller

Output returned to controller or saved to local store

Object Store contains HDF5-based Data Collections (CIMP5/

CORDEX/NCEP3)

Data collection storage size range from 100GBs to PBs
Object size in MBs to GBs (can be tuned)

Meta data maps time/geographic region to objects
HDF5 compression/chunking reduces space required

vthon Application Life Cycle 1 — no users connected
Python ytho
Scripts Notebook
Gui

Application Layer

* htp @
Jupyter iPython HDF . . .
Notebook | L Parallel || controller * Controller listening for new clients
Controller e Jupyter Hub listening for new notebook sessions
A zeroma ¥

* No engines running

Engine Nodes

4+ s3a0 @

O
OOQO

S3 Data has been imported (Public-readable)

Object Storage

ovthon Application Life Cycle 2 — Use launches notebook session
Python ytho
Serfies Notebook
Gui

Application Layer

* htp @
J iPyth .
N;‘t‘;{ffék IPay:aI?pr: Cm:?:npr e Jupyter Hub launches session
Controller * Controller gets client request from notebook
KX ZeromQ ¥

* No engines running

Engine Nodes

4+ s3a0 @

- * No S3 transfers

O
OOQO

Object Storage

iPython
I?cltlh?c: Notebook
P Gui

Application Layer

Kt htp

Jupyter iPython HDF
Notebook Parallel Controller

Controller

f ZeroMQ‘

Engine Nodes

4+ s3a0 @

O O

@, O O

Object Storage

Application Life Cycle 3 — Use loads data collection

e.g. hdfcontroller.load(‘NCEP3’) # user doesn’t need to know
S3 keys, just data collection label and any subsetting info
(time or geo-region)

Controller gets data request from notebook
Determines optimum type and # of engines
Launches Engines

Tells engines to fetch data objects from S3

Engines start
Load data partition
Signals to controller that data is ready

Transfer data to engines

iPython
:Z:Ihot: Notebook
P Gui

Application Layer

Kt htp

Jupyter iPython HDF
Notebook Parallel Controller

Controller

f ZeroMQ‘

Engine Nodes

4+ s3a0 @

O
OOQO

Object Storage

Application Life Cycle 4 — Data analytics

E.g.: get values at geolocation
Repeat cycle of query/analyze/plot as desired

e Controller gets user request from Client
e Dispatches across all engines

* Waits for responses

e Returns aggregated result to client

* Engines process requests
* Datais local to VM (SSD or RAM)

* No activity

iPython
:Z:Ih?[z Notebook
P Gui

Application Layer

Kt htp

Jupyter iPython HDF
Notebook Parallel Controller

Controller

f ZeroMQ‘

Engine Nodes

4+ s3a0 @

O
OOQO

Object Storage

Application Life Cycle 5 — no user ends session

Controller terminates Engines
Continues listening for new notebook sessions

Engines shutdown
Any data stored locally is lost!

No S3 activity

Results — Performance w/ 8 node

Run Time - 8 engines (seconds)
140.0

120.0

100.0

80.0

60.0

40.0

B l
0.0 — -

None blosc gzip 45x180 gzip 22x46 mafisc

Todo: chunked but not

BLOSC has best performance compressed dataset

for compressed format

Runtime — by number of nodes — no
compression

Performance vs Number of Nodes

2500.0
2000.0
1500.0
1000.0

500.0

0.0

I H B =
8 16 32

64

Percent of time spent loading data goes up as number
of nodes increases

Load and Run times OSDC Cluster

4000.0
3500.0
3000.0
2500.0
2000.0
1500.0
1000.0

500.0

0.0

. B B ==
8 16 32 64

M load MRun

Conclusions - Phase |

* HDF5 with simple cluster solution (ZeroMQ/IPyParallel) provided:
* Excellent performance — super linear with number of nodes
* Did not require expansion or conversion of data (as with Hadoop, etc)
* Enables scientist to use standard tools/apis for analysis

* Existing cluster solution didn’t work well with large files (>10GB)

 Cluster launch time and data loading can dominate actual compute
time

Methodology — Phase |l

* Aggregate NCEP data files to 7850x720x1440 data cube
* One file, ~100GB

 Setup large VM with file and server (h5serv, hyrax, or THREDDS)
* Parallel nodes access data via requests to server
* Adapt test script to use server interface

* Measure performance with different:
* Servers

* Chunk layout
* Number of nodes

Python NiPytEonk
Scripts otz ,OO
Gui

Application Layer

* http ¥
Jupyter iPython HDF
Notebook Parallel Controller
Controller

1t

ZeroMQ s 2

Engine Nodes

t*

REST API/DAP W

h5serv | hyrax

R

File Storage

Users connect to web-based Jupyter Notebook
Run code via REPL or submit scripts
Plot results using Matplotlib or other plotting package

Controller Runs on VM & listens for client requests
Runs Notebook kernels

Spins up Engines as needed

Dispatches work to engines (via iPyParallel/0MQ)

Engine VMs create on demand by controller

Each VM submits request to data server

Code to be run pushed by controller

Output returned to controller or saved to local store

File Storage on Server node contains aggregated data
Data collection storage size ~100GBs

Meta data maps time/geographic region to objects
HDF5 compression/chunking reduces space required

Results — Server Access

* Test runs with one node (compute summaries over time slices)

Chunk/Compression THREDDS | hsserv

None 148.6 3297.1 961.2 885.8
1x72x44/gzip9 317.6 8575.8 1264.1 ?
25x20x20/gzip9 4131.0 13946.5 6936.8 ?

Conclusions Phase |l

* Remote data access entails a performance penalty

* Allocation of a large instance running continuously required
* Data on server will be lost if instance goes down

* Aggregate performance levels out with large number of clients
 Server processes/network io become bottleneck

Future Directions — HDF Scalable Data Service

 Scalable Data Service for HDF5
» Designed for public or private clouds
* Uses Object Storage for persistent data
* “share-nothing” architecture
e Support any number of clients
* Cost-effective
 Efficient access to HDF5 objects without opening file

 Client SDK’s for C/Fortran/Python enable existing applications to be used with
the service

e REST API compatible with current HDF Server (reference implementation)

HSDS Architecture

Service Nodes (SN) handle client requests

Data Nodes (DN) partition object store

Both SN and DN clusters can scale based on demand

HDF Objects (links, datasets, chunks, etc.) stored as objects

§

m ! <4

¥
>

5

D
D+
(e

5

Client -
s 1K

5

(D«

Obiject Store

Separation of Storage and Compute Costs

* Storage
* AWS S3 can support any size storage at affordable costs (~S0.03/GB/month)
* AWS has built in redundancy, so no need for backups, etc.

* Compute
* |f no active users, there is minimal compute costs (~S50/month)
 Service nodes can scale up in response to load (costs proportional to usage)

Open Questions

* S3 storage
» Optimal object store key mapping/object sizes
* Compression/chunking to minimize cost/increase performance

* Cost profile (for AWS)

» Steady state costs — S3 storage/controller VM
* VM instance hours * number of engines
* S3 requests?

* Best engines characteristics
* Instance type - Need enough local storage. SSD is better than rotating
 vCPUs? One thread per VM?
* Optimal # of engines for a given data collection

* Security
 ZeroMQ doesn’t have any!
 Runin VPC per user?

* How would AWS implementation perform compared to OpenStack?
 Compare using Docker Containers rather than VMs as engine (faster spin up time)
* Validation of transformed results

