
HDF	Performance	on	OpenStack	

John	Readey	
The	HDF	Group	
jreadey@hdfgroup.org	

June	15,	2016	

www.hdfgroup.org	

Mission

•  InvesHgate	performance	of	using	HDF5	in	a	cloud	environment	
•  Measure	performance	using	standard	library	

•  Compression	
•  Chunk	layouts	
•  File	aggregaHon	

•  InvesHgate	ways	to	harness	cloud	specific	capabiliHes:	
•  ElasHc	Compute	–	create	compute	instances	on	demand	
•  Object	Storage	–	uHlize	object	store	for	persistent	storage	

•  Comparison	to	use	of	other	frameworks	like	Hadoop	or	Spark	

• Determine	future	work	that	would	enable	HDF5	to	perform	beTer	in	
the	cloud		

Evalua,on Criteria

•  EvaluaHon	Criteria	
•  Performance	–	how	fast	can	a	typical	science	problem	be	computed	
•  Storage	–	How	much	storage	is	needed	for	the	dataset	
•  Usability	–	how	easy	is	it	to	perform	tasks	typical	of	science	analyHcs	
•  Scalability	--	How	effecHvely	can	mulHple	cores	be	used	
•  Cost	–	Cost	metrics	(storage+compute)	for	various	soluHons	

Plan of Inves,ga,on

•  Select	test	dataset	
•  NCEP3	–	(720,1440)	gridded	data	–	7980	files	-	130	GB	uncompressed	

•  Choose	a	science	problem	
•  Calculate	min/max/avg/stdev	for	a	given	dataset	

•  Select	compute	pladorm	
•  OSDC	Griffin	–	OpenStack,	300	nodes	

•  InvesHgate	HDF5	performance	
•  Phase	1:	using	one	compute	node		

•  Vary	chunk	layout/compression	filters	
•  Phase	2:	using	using	mulHple	nodes	
•  Phase	3:	client/server	with	HDF	Server	

•  Plan	for	Future	work	

Hardware

• Using	Open	Science	Data	Cloud	Griffin	cluster	
• Xeon	systems	with	1-16	cores	
•  300	compute	nodes	
•  10Gb	Ethernet	
•  Ephemeral	local	POSIX	file	system	
•  Shared	persistent	storage	(Ceph	object	store,	S3	API)	

So:ware

• HDF5	library	v1.8.15	
• Compression	libraries:	MAFISC/GZIP/BLOSC	
• OperaHng	system:	Ubuntu	Linux	
•  Linux	development	tools	
• HDF5	tools:	h5dump,	h5repack,	etc.	
• Python	3	
• Python	packages:	h5py,	NumPy,	ipyparallel,	PyTables	
• HDF	Server:			hTps://github.com/HDFGroup/h5serv		
• H5pyd:	hTps://github.com/HDFGroup/hpd		

OpenStack at OSDC in Brief

•  Instances	can	be	created	either	programmaHcally	or	via	web	console	
• Compute	Instances	iniHalized	from	snapshot	or	image	file	
• Many	different	instance	configuraHons	available	

•  RAM	2GB	–	100GB	
•  Disk	10GB	–	2TB	

• Onboard	disk	is	ephemeral!	–	will	be	lost	when	the	instance	is	shut	
down	

Object	Storage	

Python	Test	
Driver	

Test	Instance	
•  Instance	is	shut	down	

•  Test	driver	is	run	

S3	API	

•  Data	files	copied	from	object	storage	to	instance	

•  Instance	is	created	

Local	Disk	

hdf5lib	

h5py	

•  Results	and	performance	measurements	stored	in	Object	
Store	

HDF5 Chunking and compression

• Chunking	is	one	of		the	storage	layouts	for	HDF5	datasets	
• HDF5	dataset’s	byte	stream	is	broken	up	in	chunks	and	stored	at	
various	locaHons	in	the	file	
• Chunks	are	of	equal	size	in	dataset’s	dataspace	but	may	not	be	of	
equal	byte	size	in	the	file	
• HDF5	filtering	works	on	chunks	only	
•  Filters	for	compression/decompression,	scaling,	checksum	
calculaHon,	etc.	

HDF5 Chunking and compression

Determining chunk layouts

•  Two	different	chunking	algorithms:	
•  Unidata’s	op0mal	chunking	formula	for	3D	datasets	
•  h5py	formula	

•  Three	different	chunk	sizes	chosen	for	the	collated	NCEP	data	set:	
•  Synop0c	map:	1×72×144	
•  Data	rod:	7850×1×1	
•  Data	cube:	25×20×20	

• Best	layout	depends	on	how	what	the	applicaHons	access	paTern	is	

Results – Compression Size

0	

20	

40	

60	

80	

100	

120	

140	

None	 blosc	 gzip	 mafisc	

Compressed	Size	(GB)	

MAFISC	performed	best,	but	is	a	lossey	
compressor.	
Blosc	and	gzip	have	reducHon	of	~60%	

		

Results – Run,me

•  Load	from	S3:	~60m	
• RunHme:	

•  No	Compression/no	chunking:		11.8m	
•  (1x72x144)	chunk	layout/gzip:				5.2m	
•  (25x20x20)	chunk	layout/gzip:			68.6m	
•  (7850x1x1)	chunk	layout/gzip:	15.4d	

•  Full	results	at:	hTps://github.com/HDFGroup/datacontainer/blob/master/results.txt	

Phase 2 – U,lizing mul,ple nodes

• One	advantage	of	cloud	environments	is	on-demand	compute,	the	
ability	to	instanHate	and	provision	compute	nodes	programmaHcally	
•  Frameworks	like	Hadoop	or	Spark	harness	the	power	of	mulHple	
compute	nodes	to	get	work	done	faster	
• How	easy	would	it	be	to	uHlize	mulHple	instances	with	OpenStack	
and	the	standard	HDF5	library?	

Cluster Challenge

• Other	systems	(e.g.	Hadoop)	support	clusters	out	of	the	box	
• HDF5	does	not…	
• …	So	create	“on-demand”	cluster		

• Wrote	code	to	launch	VM’s	programmaHcally	
•  Connect	using	ZeroMQ	
•  Run	with	parallel	Python		
•  Modify	test	driver	to	support	parallel	Python		
• Wrote	Python	module	to	distribute	data	across	engines	

Object	Storage	

Engine	Nodes	

Jupyter	
Notebook	

Python	
Scripts	

iPython	
Parallel	

HDF	
Controller	

Controller	

ApplicaHon	Layer	

iPython	
Notebook	

Gui	

•  Object	Store	contains	HDF5-based	Data	CollecHons	(CIMP5/
CORDEX/NCEP3)	

•  Data	collecHon	storage	size	range	from	100GBs	to	PBs	
•  Object	size	in	MBs	to	GBs	(can	be	tuned)	
•  Meta	data	maps	Hme/geographic	region	to	objects	
•  HDF5	compression/chunking	reduces	space	required	

•  Engine	VMs	create	on	demand	by	controller	
•  Each	VM	reads	a	parHHon	of	data	from	object	store	
•  Code	to	be	run	pushed	by	controller	
•  Output	returned	to	controller	or	saved	to	local	store	

S3	API	

ZeroMQ	

hTp	
•  Controller	Runs	on	VM	&	listens	for	client	requests	
•  Runs	Notebook	kernels	
•  Spins	up	Engines	as	needed	
•  Dispatches	work	to	engines	(via	iPyParallel/0MQ)	

•  Users	connect	to	web-based	Jupyter	Notebook	
•  Run	code	via	REPL	or	submit	scripts	
•  Plot	results	using	Matplotlib	or	other	ploxng	package	

Object	Storage	

Engine	Nodes	

Jupyter	
Notebook	

Python	
Scripts	

iPython	
Parallel	

HDF	
Controller	

Controller	

ApplicaHon	Layer	

iPython	
Notebook	

Gui	

S3	API	

ZeroMQ	

hTp	

•  S3	Data	has	been	imported	(Public-readable)	

ApplicaHon	Life	Cycle	1	–	no	users	connected		

•  No	engines	running	

•  Controller	listening	for	new	clients	
•  Jupyter	Hub	listening	for	new	notebook	sessions	

Object	Storage	

Engine	Nodes	

Jupyter	
Notebook	

Python	
Scripts	

iPython	
Parallel	

HDF	
Controller	

Controller	

ApplicaHon	Layer	

iPython	
Notebook	

Gui	

S3	API	

ZeroMQ	

hTp	

•  No	S3	transfers	

ApplicaHon	Life	Cycle	2	–	Use	launches	notebook	session			

•  No	engines	running	

•  Jupyter	Hub	launches	session	
•  Controller	gets	client	request	from	notebook	

Object	Storage	

Engine	Nodes	

Jupyter	
Notebook	

Python	
Scripts	

iPython	
Parallel	

HDF	
Controller	

Controller	

ApplicaHon	Layer	

iPython	
Notebook	

Gui	

S3	API	

ZeroMQ	

hTp	

•  Transfer	data	to	engines	

ApplicaHon	Life	Cycle	3	–	Use	loads	data	collecHon	
	
e.g.	hdfcontroller.load(‘NCEP3’)		#	user	doesn’t	need	to	know	
S3	keys,	just	data	collecHon	label	and	any	subsexng	info	
(Hme	or	geo-region)			

•  Engines	start	
•  Load	data	parHHon	
•  Signals	to	controller	that	data	is	ready	

•  Controller	gets	data	request	from	notebook	
•  Determines	opHmum	type	and	#	of	engines	
•  Launches	Engines	
•  Tells	engines	to	fetch	data	objects	from	S3	

Object	Storage	

Engine	Nodes	

Jupyter	
Notebook	

Python	
Scripts	

iPython	
Parallel	

HDF	
Controller	

Controller	

ApplicaHon	Layer	

iPython	
Notebook	

Gui	

S3	API	

ZeroMQ	

hTp	

•  No	acHvity	

ApplicaHon	Life	Cycle	4	–	Data	analyHcs			
	
E.g.:	get	values	at	geolocaHon	
Repeat	cycle	of	query/analyze/plot		as	desired	

•  Engines	process	requests	
•  Data	is	local	to	VM	(SSD	or	RAM)	

•  Controller	gets	user	request	from	Client	
•  Dispatches	across	all	engines	
•  Waits	for	responses	
•  Returns	aggregated	result	to	client	

Object	Storage	

Engine	Nodes	

Jupyter	
Notebook	

Python	
Scripts	

iPython	
Parallel	

HDF	
Controller	

Controller	

ApplicaHon	Layer	

iPython	
Notebook	

Gui	

S3	API	

ZeroMQ	

hTp	

•  No	S3	acHvity	

ApplicaHon	Life	Cycle	5	–	no	user	ends	session	

•  Engines	shutdown	
•  Any	data	stored	locally	is	lost!	

•  Controller	terminates	Engines	
•  ConHnues	listening	for	new	notebook	sessions	

Results – Performance w/ 8 node

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

140.0	

None	 blosc	 gzip	45x180	 gzip	22x46	 mafisc	

Run	Time	-	8	engines	(seconds)	

BLOSC	has	best	performance	
for	compressed	format	

Todo:	chunked	but	not	
compressed	dataset	

Run,me – by number of nodes – no
compression

0.0	

500.0	

1000.0	

1500.0	

2000.0	

2500.0	

4	 8	 16	 32	 64	

Performance	vs	Number	of	Nodes	

0.0	

500.0	

1000.0	

1500.0	

2000.0	

2500.0	

3000.0	

3500.0	

4000.0	

1	 4	 8	 16	 32	 64	

Load	and	Run	Hmes	OSDC	Cluster	

Load	 Run	

Percent	of	Hme	spent	loading	data	goes	up	as	number	
of	nodes	increases	

Conclusions - Phase II

• HDF5	with	simple	cluster	soluHon	(ZeroMQ/IPyParallel)	provided:	
•  Excellent	performance	–	super	linear	with	number	of	nodes	
•  Did	not	require	expansion	or	conversion	of	data	(as	with	Hadoop,	etc)	
•  Enables	scienHst	to	use	standard	tools/apis	for	analysis	

•  ExisHng	cluster	soluHon	didn’t	work	well	with	large	files	(>10GB)	
• Cluster	launch	Hme	and	data	loading	can	dominate	actual	compute	
Hme	

Methodology – Phase III

• Aggregate	NCEP	data	files	to	7850x720x1440	data	cube	
•  One	file,	~100GB	

•  Setup	large	VM	with	file	and	server	(h5serv,	hyrax,	or	THREDDS)	
• Parallel	nodes	access	data	via	requests	to	server	
• Adapt	test	script	to	use	server	interface	
• Measure	performance	with	different:	

•  Servers		
•  Chunk	layout	
•  Number	of	nodes	

File	Storage	

Engine	Nodes	

Jupyter	
Notebook	

Python	
Scripts	

iPython	
Parallel	

HDF	
Controller	

Controller	

ApplicaHon	Layer	

iPython	
Notebook	

Gui	

•  File	Storage	on	Server	node	contains	aggregated	data	
•  Data	collecHon	storage	size	~100GBs		
•  Meta	data	maps	Hme/geographic	region	to	objects	
•  HDF5	compression/chunking	reduces	space	required	

•  Engine	VMs	create	on	demand	by	controller	
•  Each	VM	submits	request	to	data	server	
•  Code	to	be	run	pushed	by	controller	
•  Output	returned	to	controller	or	saved	to	local	store	

REST	API/DAP	

ZeroMQ	

hTp	
•  Controller	Runs	on	VM	&	listens	for	client	requests	
•  Runs	Notebook	kernels	
•  Spins	up	Engines	as	needed	
•  Dispatches	work	to	engines	(via	iPyParallel/0MQ)	

•  Users	connect	to	web-based	Jupyter	Notebook	
•  Run	code	via	REPL	or	submit	scripts	
•  Plot	results	using	Matplotlib	or	other	ploxng	package	

h5serv	 hyrax	 THREDDS	

Results – Server Access

•  Test	runs	with	one	node	(compute	summaries	over	Hme	slices)	

Chunk/Compression	 Local	 Hyrax	 THREDDS	 h5serv	

None	 148.6	 3297.1	 961.2	 885.8	

1x72x44/gzip9	 317.6	 8575.8	 1264.1	 ?	

25x20x20/gzip9	 4131.0	 13946.5	 6936.8	 ?	

Conclusions Phase III

• Remote	data	access	entails	a	performance	penalty	
• AllocaHon	of	a	large	instance	running	conHnuously	required	

•  Data	on	server	will	be	lost	if	instance	goes	down	
• Aggregate	performance	levels	out	with	large	number	of	clients	

•  Server	processes/network	io	become	boTleneck	

Future Direc,ons – HDF Scalable Data Service

•  Scalable	Data	Service	for	HDF5	
•  Designed	for	public	or	private	clouds	
•  Uses	Object	Storage	for	persistent	data	
•  ”share-nothing”	architecture	
•  Support	any	number	of	clients	
•  Cost-effecHve	
•  Efficient	access	to	HDF5	objects	without	opening	file	
•  Client	SDK’s	for	C/Fortran/Python	enable	exisHng	applicaHons	to	be	used	with	
the	service	
•  REST	API	compaHble	with	current	HDF	Server	(reference	implementaHon)	

HSDS Architecture

•  Service	Nodes	(SN)	handle	client	requests	
•  Data	Nodes	(DN)	parHHon	object	store	
•  Both	SN	and	DN	clusters	can	scale	based	on	demand	
•  HDF	Objects	(links,	datasets,	chunks,	etc.)	stored	as	objects	
	

Separa,on of Storage and Compute Costs

•  Storage	
•  AWS	S3	can	support	any	size	storage	at	affordable	costs	(~$0.03/GB/month)	
•  AWS	has	built	in	redundancy,	so	no	need	for	backups,	etc.	

• Compute	
•  If	no	acHve	users,	there	is	minimal	compute	costs	(~$50/month)	
•  Service	nodes	can	scale	up	in	response	to	load	(costs	proporHonal	to	usage)	

Open Ques,ons

•  S3	storage	

•  OpHmal	object	store	key	mapping/object	sizes	
•  Compression/chunking	to	minimize	cost/increase	performance	

•  Cost	profile	(for	AWS)	
•  Steady	state	costs	–	S3	storage/controller	VM	
•  VM	instance	hours	*	number	of	engines	
•  S3	requests?	

•  Best	engines	characterisHcs	
•  Instance	type	-	Need	enough	local	storage.		SSD	is	beTer	than	rotaHng	
•  vCPUs?		One	thread	per	VM?	
•  OpHmal	#	of	engines	for	a	given	data	collecHon	

•  Security	
•  ZeroMQ	doesn’t	have	any!	
•  Run	in	VPC	per	user?	

•  How	would	AWS	implementaHon	perform	compared	to	OpenStack?	
•  Compare	using	Docker	Containers	rather	than	VMs	as	engine		(faster	spin	up	Hme)	
•  ValidaHon	of	transformed	results	

	

